The forcing total monophonic number of a graph

Abstract For a connected graph G = (V, E) of order at least two, a subset T of a minimum total monophonic set S of G is a forcing total monophonic subset for S if S is the unique minimum total monophonic set containing T . A forcing total monophonic subset for S of minimum cardinality is a minimum f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Santhakumaran,A. P., Titus,P., Ganesamoorthy,K., Murugan,M.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200561
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000200561
record_format dspace
spelling oai:scielo:S0716-091720210002005612021-04-03The forcing total monophonic number of a graphSanthakumaran,A. P.Titus,P.Ganesamoorthy,K.Murugan,M. Total monophonic set Total monophonic number Forcing total monophonic subset Forcing total monophonic number Abstract For a connected graph G = (V, E) of order at least two, a subset T of a minimum total monophonic set S of G is a forcing total monophonic subset for S if S is the unique minimum total monophonic set containing T . A forcing total monophonic subset for S of minimum cardinality is a minimum forcing total monophonic subset of S. The forcing total monophonic number f tm (S) in G is the cardinality of a minimum forcing total monophonic subset of S. The forcing total monophonic number of G is f tm (G) = min{f tm (S)}, where the minimum is taken over all minimum total monophonic sets S in G. We determine bounds for it and find the forcing total monophonic number of certain classes of graphs. It is shown that for every pair a, b of positive integers with 0 &#8804; a < b and b &#8805; a+4, there exists a connected graph G such that f tm (G) = a and m t (G) = b.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.2 20212021-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200561en10.22199/issn.0717-6279-2021-02-0031
institution Scielo Chile
collection Scielo Chile
language English
topic Total monophonic set
Total monophonic number
Forcing total monophonic subset
Forcing total monophonic number
spellingShingle Total monophonic set
Total monophonic number
Forcing total monophonic subset
Forcing total monophonic number
Santhakumaran,A. P.
Titus,P.
Ganesamoorthy,K.
Murugan,M.
The forcing total monophonic number of a graph
description Abstract For a connected graph G = (V, E) of order at least two, a subset T of a minimum total monophonic set S of G is a forcing total monophonic subset for S if S is the unique minimum total monophonic set containing T . A forcing total monophonic subset for S of minimum cardinality is a minimum forcing total monophonic subset of S. The forcing total monophonic number f tm (S) in G is the cardinality of a minimum forcing total monophonic subset of S. The forcing total monophonic number of G is f tm (G) = min{f tm (S)}, where the minimum is taken over all minimum total monophonic sets S in G. We determine bounds for it and find the forcing total monophonic number of certain classes of graphs. It is shown that for every pair a, b of positive integers with 0 &#8804; a < b and b &#8805; a+4, there exists a connected graph G such that f tm (G) = a and m t (G) = b.
author Santhakumaran,A. P.
Titus,P.
Ganesamoorthy,K.
Murugan,M.
author_facet Santhakumaran,A. P.
Titus,P.
Ganesamoorthy,K.
Murugan,M.
author_sort Santhakumaran,A. P.
title The forcing total monophonic number of a graph
title_short The forcing total monophonic number of a graph
title_full The forcing total monophonic number of a graph
title_fullStr The forcing total monophonic number of a graph
title_full_unstemmed The forcing total monophonic number of a graph
title_sort forcing total monophonic number of a graph
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200561
work_keys_str_mv AT santhakumaranap theforcingtotalmonophonicnumberofagraph
AT titusp theforcingtotalmonophonicnumberofagraph
AT ganesamoorthyk theforcingtotalmonophonicnumberofagraph
AT muruganm theforcingtotalmonophonicnumberofagraph
AT santhakumaranap forcingtotalmonophonicnumberofagraph
AT titusp forcingtotalmonophonicnumberofagraph
AT ganesamoorthyk forcingtotalmonophonicnumberofagraph
AT muruganm forcingtotalmonophonicnumberofagraph
_version_ 1718439900917792768