The forcing total monophonic number of a graph
Abstract For a connected graph G = (V, E) of order at least two, a subset T of a minimum total monophonic set S of G is a forcing total monophonic subset for S if S is the unique minimum total monophonic set containing T . A forcing total monophonic subset for S of minimum cardinality is a minimum f...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200561 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172021000200561 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720210002005612021-04-03The forcing total monophonic number of a graphSanthakumaran,A. P.Titus,P.Ganesamoorthy,K.Murugan,M. Total monophonic set Total monophonic number Forcing total monophonic subset Forcing total monophonic number Abstract For a connected graph G = (V, E) of order at least two, a subset T of a minimum total monophonic set S of G is a forcing total monophonic subset for S if S is the unique minimum total monophonic set containing T . A forcing total monophonic subset for S of minimum cardinality is a minimum forcing total monophonic subset of S. The forcing total monophonic number f tm (S) in G is the cardinality of a minimum forcing total monophonic subset of S. The forcing total monophonic number of G is f tm (G) = min{f tm (S)}, where the minimum is taken over all minimum total monophonic sets S in G. We determine bounds for it and find the forcing total monophonic number of certain classes of graphs. It is shown that for every pair a, b of positive integers with 0 ≤ a < b and b ≥ a+4, there exists a connected graph G such that f tm (G) = a and m t (G) = b.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.2 20212021-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200561en10.22199/issn.0717-6279-2021-02-0031 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Total monophonic set Total monophonic number Forcing total monophonic subset Forcing total monophonic number |
spellingShingle |
Total monophonic set Total monophonic number Forcing total monophonic subset Forcing total monophonic number Santhakumaran,A. P. Titus,P. Ganesamoorthy,K. Murugan,M. The forcing total monophonic number of a graph |
description |
Abstract For a connected graph G = (V, E) of order at least two, a subset T of a minimum total monophonic set S of G is a forcing total monophonic subset for S if S is the unique minimum total monophonic set containing T . A forcing total monophonic subset for S of minimum cardinality is a minimum forcing total monophonic subset of S. The forcing total monophonic number f tm (S) in G is the cardinality of a minimum forcing total monophonic subset of S. The forcing total monophonic number of G is f tm (G) = min{f tm (S)}, where the minimum is taken over all minimum total monophonic sets S in G. We determine bounds for it and find the forcing total monophonic number of certain classes of graphs. It is shown that for every pair a, b of positive integers with 0 ≤ a < b and b ≥ a+4, there exists a connected graph G such that f tm (G) = a and m t (G) = b. |
author |
Santhakumaran,A. P. Titus,P. Ganesamoorthy,K. Murugan,M. |
author_facet |
Santhakumaran,A. P. Titus,P. Ganesamoorthy,K. Murugan,M. |
author_sort |
Santhakumaran,A. P. |
title |
The forcing total monophonic number of a graph |
title_short |
The forcing total monophonic number of a graph |
title_full |
The forcing total monophonic number of a graph |
title_fullStr |
The forcing total monophonic number of a graph |
title_full_unstemmed |
The forcing total monophonic number of a graph |
title_sort |
forcing total monophonic number of a graph |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2021 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200561 |
work_keys_str_mv |
AT santhakumaranap theforcingtotalmonophonicnumberofagraph AT titusp theforcingtotalmonophonicnumberofagraph AT ganesamoorthyk theforcingtotalmonophonicnumberofagraph AT muruganm theforcingtotalmonophonicnumberofagraph AT santhakumaranap forcingtotalmonophonicnumberofagraph AT titusp forcingtotalmonophonicnumberofagraph AT ganesamoorthyk forcingtotalmonophonicnumberofagraph AT muruganm forcingtotalmonophonicnumberofagraph |
_version_ |
1718439900917792768 |