SD-Prime cordial labeling of alternate k-polygonal snake of various types
Abstract: Let f : V (G) → {1, 2,..., |V (G)|} be a bijection, and let us denote S = f(u) + f(v) and D = |f(u) − f(v)| for every edge uv in E(G). Let f' be the induced edge labeling, induced by the vertex labeling f, defined as f' : E(G) → {0, 1} such that for...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000300619 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract: Let f : V (G) → {1, 2,..., |V (G)|} be a bijection, and let us denote S = f(u) + f(v) and D = |f(u) − f(v)| for every edge uv in E(G). Let f' be the induced edge labeling, induced by the vertex labeling f, defined as f' : E(G) → {0, 1} such that for any edge uv in E(G), f' (uv)=1 if gcd(S, D)=1, and f' (uv)=0 otherwise. Let e f' (0) and e f' (1) be the number of edges labeled with 0 and 1 respectively. f is SD-prime cordial labeling if |e f' (0) − e f' (1)| ≤ 1 and G is SD-prime cordial graph if it admits SD-prime cordial labeling. In this paper, we have discussed the SD-prime cordial labeling of alternate k-polygonal snake graphs of type-1, type-2 and type-3. |
---|