SD-Prime cordial labeling of alternate k-polygonal snake of various types

Abstract: Let f : V (G) → {1, 2,..., |V (G)|} be a bijection, and let us denote S = f(u) + f(v) and D = |f(u) − f(v)| for every edge uv in E(G). Let f' be the induced edge labeling, induced by the vertex labeling f, defined as f' : E(G) → {0, 1} such that for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Prajapati,U. M., Vantiya,Anit
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000300619
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000300619
record_format dspace
spelling oai:scielo:S0716-091720210003006192021-06-07SD-Prime cordial labeling of alternate k-polygonal snake of various typesPrajapati,U. M.Vantiya,Anit SD-prime cordial graph Triangular snake Alternate quadrilateral snake n-polygonal snake Alternate k-polygonal snake Abstract: Let f : V (G) → {1, 2,..., |V (G)|} be a bijection, and let us denote S = f(u) + f(v) and D = |f(u) − f(v)| for every edge uv in E(G). Let f' be the induced edge labeling, induced by the vertex labeling f, defined as f' : E(G) → {0, 1} such that for any edge uv in E(G), f' (uv)=1 if gcd(S, D)=1, and f' (uv)=0 otherwise. Let e f' (0) and e f' (1) be the number of edges labeled with 0 and 1 respectively. f is SD-prime cordial labeling if |e f' (0) − e f' (1)| ≤ 1 and G is SD-prime cordial graph if it admits SD-prime cordial labeling. In this paper, we have discussed the SD-prime cordial labeling of alternate k-polygonal snake graphs of type-1, type-2 and type-3.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.3 20212021-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000300619en10.22199/issn.0717-6279-4015
institution Scielo Chile
collection Scielo Chile
language English
topic SD-prime cordial graph
Triangular snake
Alternate quadrilateral snake
n-polygonal snake
Alternate k-polygonal snake
spellingShingle SD-prime cordial graph
Triangular snake
Alternate quadrilateral snake
n-polygonal snake
Alternate k-polygonal snake
Prajapati,U. M.
Vantiya,Anit
SD-Prime cordial labeling of alternate k-polygonal snake of various types
description Abstract: Let f : V (G) → {1, 2,..., |V (G)|} be a bijection, and let us denote S = f(u) + f(v) and D = |f(u) − f(v)| for every edge uv in E(G). Let f' be the induced edge labeling, induced by the vertex labeling f, defined as f' : E(G) → {0, 1} such that for any edge uv in E(G), f' (uv)=1 if gcd(S, D)=1, and f' (uv)=0 otherwise. Let e f' (0) and e f' (1) be the number of edges labeled with 0 and 1 respectively. f is SD-prime cordial labeling if |e f' (0) − e f' (1)| ≤ 1 and G is SD-prime cordial graph if it admits SD-prime cordial labeling. In this paper, we have discussed the SD-prime cordial labeling of alternate k-polygonal snake graphs of type-1, type-2 and type-3.
author Prajapati,U. M.
Vantiya,Anit
author_facet Prajapati,U. M.
Vantiya,Anit
author_sort Prajapati,U. M.
title SD-Prime cordial labeling of alternate k-polygonal snake of various types
title_short SD-Prime cordial labeling of alternate k-polygonal snake of various types
title_full SD-Prime cordial labeling of alternate k-polygonal snake of various types
title_fullStr SD-Prime cordial labeling of alternate k-polygonal snake of various types
title_full_unstemmed SD-Prime cordial labeling of alternate k-polygonal snake of various types
title_sort sd-prime cordial labeling of alternate k-polygonal snake of various types
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000300619
work_keys_str_mv AT prajapatium sdprimecordiallabelingofalternatekpolygonalsnakeofvarioustypes
AT vantiyaanit sdprimecordiallabelingofalternatekpolygonalsnakeofvarioustypes
_version_ 1718439902458150912