A linear time algorithm for minimum equitable dominating set in trees

Abstract Let G = (V, E) be a graph. A subset D e of V is said to be an equitable dominating set if for every v ∈ V \ D e there exists u ∈ D e such that uv ∈ E and |deg(u) − deg(v)| ≤ 1, where, deg(u) and deg(v) denote the degree of the vertices u...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rana,Sohel, Nayeem,Sk. Md. Abu
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400805
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000400805
record_format dspace
spelling oai:scielo:S0716-091720210004008052021-08-12A linear time algorithm for minimum equitable dominating set in treesRana,SohelNayeem,Sk. Md. Abu Equitable domination Linear time algorithm Trees Abstract Let G = (V, E) be a graph. A subset D e of V is said to be an equitable dominating set if for every v ∈ V \ D e there exists u ∈ D e such that uv ∈ E and |deg(u) − deg(v)| ≤ 1, where, deg(u) and deg(v) denote the degree of the vertices u and v respectively. An equitable dominating set with minimum cardinality is called the minimum equitable dominating set and its cardinality is called the equitable domination number and it is denoted by γ e . The problem of finding minimum equitable dominating set in general graphs is NP-complete. In this paper, we give a linear time algorithm to determine minimum equitable dominating set of a tree.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.4 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400805en10.22199/issn.0717-6279-4552
institution Scielo Chile
collection Scielo Chile
language English
topic Equitable domination
Linear time algorithm
Trees
spellingShingle Equitable domination
Linear time algorithm
Trees
Rana,Sohel
Nayeem,Sk. Md. Abu
A linear time algorithm for minimum equitable dominating set in trees
description Abstract Let G = (V, E) be a graph. A subset D e of V is said to be an equitable dominating set if for every v ∈ V \ D e there exists u ∈ D e such that uv ∈ E and |deg(u) − deg(v)| ≤ 1, where, deg(u) and deg(v) denote the degree of the vertices u and v respectively. An equitable dominating set with minimum cardinality is called the minimum equitable dominating set and its cardinality is called the equitable domination number and it is denoted by γ e . The problem of finding minimum equitable dominating set in general graphs is NP-complete. In this paper, we give a linear time algorithm to determine minimum equitable dominating set of a tree.
author Rana,Sohel
Nayeem,Sk. Md. Abu
author_facet Rana,Sohel
Nayeem,Sk. Md. Abu
author_sort Rana,Sohel
title A linear time algorithm for minimum equitable dominating set in trees
title_short A linear time algorithm for minimum equitable dominating set in trees
title_full A linear time algorithm for minimum equitable dominating set in trees
title_fullStr A linear time algorithm for minimum equitable dominating set in trees
title_full_unstemmed A linear time algorithm for minimum equitable dominating set in trees
title_sort linear time algorithm for minimum equitable dominating set in trees
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400805
work_keys_str_mv AT ranasohel alineartimealgorithmforminimumequitabledominatingsetintrees
AT nayeemskmdabu alineartimealgorithmforminimumequitabledominatingsetintrees
AT ranasohel lineartimealgorithmforminimumequitabledominatingsetintrees
AT nayeemskmdabu lineartimealgorithmforminimumequitabledominatingsetintrees
_version_ 1718439907591979008