A linear time algorithm for minimum equitable dominating set in trees
Abstract Let G = (V, E) be a graph. A subset D e of V is said to be an equitable dominating set if for every v ∈ V \ D e there exists u ∈ D e such that uv ∈ E and |deg(u) − deg(v)| ≤ 1, where, deg(u) and deg(v) denote the degree of the vertices u...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400805 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172021000400805 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720210004008052021-08-12A linear time algorithm for minimum equitable dominating set in treesRana,SohelNayeem,Sk. Md. Abu Equitable domination Linear time algorithm Trees Abstract Let G = (V, E) be a graph. A subset D e of V is said to be an equitable dominating set if for every v ∈ V \ D e there exists u ∈ D e such that uv ∈ E and |deg(u) − deg(v)| ≤ 1, where, deg(u) and deg(v) denote the degree of the vertices u and v respectively. An equitable dominating set with minimum cardinality is called the minimum equitable dominating set and its cardinality is called the equitable domination number and it is denoted by γ e . The problem of finding minimum equitable dominating set in general graphs is NP-complete. In this paper, we give a linear time algorithm to determine minimum equitable dominating set of a tree.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.4 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400805en10.22199/issn.0717-6279-4552 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Equitable domination Linear time algorithm Trees |
spellingShingle |
Equitable domination Linear time algorithm Trees Rana,Sohel Nayeem,Sk. Md. Abu A linear time algorithm for minimum equitable dominating set in trees |
description |
Abstract Let G = (V, E) be a graph. A subset D e of V is said to be an equitable dominating set if for every v ∈ V \ D e there exists u ∈ D e such that uv ∈ E and |deg(u) − deg(v)| ≤ 1, where, deg(u) and deg(v) denote the degree of the vertices u and v respectively. An equitable dominating set with minimum cardinality is called the minimum equitable dominating set and its cardinality is called the equitable domination number and it is denoted by γ e . The problem of finding minimum equitable dominating set in general graphs is NP-complete. In this paper, we give a linear time algorithm to determine minimum equitable dominating set of a tree. |
author |
Rana,Sohel Nayeem,Sk. Md. Abu |
author_facet |
Rana,Sohel Nayeem,Sk. Md. Abu |
author_sort |
Rana,Sohel |
title |
A linear time algorithm for minimum equitable dominating set in trees |
title_short |
A linear time algorithm for minimum equitable dominating set in trees |
title_full |
A linear time algorithm for minimum equitable dominating set in trees |
title_fullStr |
A linear time algorithm for minimum equitable dominating set in trees |
title_full_unstemmed |
A linear time algorithm for minimum equitable dominating set in trees |
title_sort |
linear time algorithm for minimum equitable dominating set in trees |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2021 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400805 |
work_keys_str_mv |
AT ranasohel alineartimealgorithmforminimumequitabledominatingsetintrees AT nayeemskmdabu alineartimealgorithmforminimumequitabledominatingsetintrees AT ranasohel lineartimealgorithmforminimumequitabledominatingsetintrees AT nayeemskmdabu lineartimealgorithmforminimumequitabledominatingsetintrees |
_version_ |
1718439907591979008 |