A linear time algorithm for minimum equitable dominating set in trees
Abstract Let G = (V, E) be a graph. A subset D e of V is said to be an equitable dominating set if for every v ∈ V \ D e there exists u ∈ D e such that uv ∈ E and |deg(u) − deg(v)| ≤ 1, where, deg(u) and deg(v) denote the degree of the vertices u...
Guardado en:
Autores principales: | Rana,Sohel, Nayeem,Sk. Md. Abu |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400805 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Equi independent equitable dominating sets in graphs
por: Vaidya,S. K., et al.
Publicado: (2016) -
Equitably strong non-split equitable domination in graphs
por: Nataraj,P., et al.
Publicado: (2021) -
A note on complementary tree domination number of a tree
por: Krishnakumari,B, et al.
Publicado: (2015) -
Trees with vertex-edge roman domination number twice the domination number minus one
por: Naresh Kumar,H., et al.
Publicado: (2020) -
Equitable Graph of a Graph
por: Dharmalingam,Kuppusamy
Publicado: (2012)