Lyapunov-type inequality for a Riemann-Liouville type fractional boundary value problem with anti-periodic boundary conditions

Abstract In this article, we establish a Lyapunov-type inequality for a two-point Riemann-Liouville type fractional boundary value problem associated with well-posed anti-periodic boundary conditions. As an application, we estimate a lower bound for the eigenvalue of the corresponding fractional eig...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jonnalagadda,Jagan Mohan, Basua,Debananda
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400873
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000400873
record_format dspace
spelling oai:scielo:S0716-091720210004008732021-08-12Lyapunov-type inequality for a Riemann-Liouville type fractional boundary value problem with anti-periodic boundary conditionsJonnalagadda,Jagan MohanBasua,Debananda Riemann-Liouville type fractional derivative Boundary value problem Green’s function Lyapunov inequality Eigenvalue estimate Abstract In this article, we establish a Lyapunov-type inequality for a two-point Riemann-Liouville type fractional boundary value problem associated with well-posed anti-periodic boundary conditions. As an application, we estimate a lower bound for the eigenvalue of the corresponding fractional eigenvalue problem.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.4 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400873en10.22199/issn.0717-6279-3488
institution Scielo Chile
collection Scielo Chile
language English
topic Riemann-Liouville type fractional derivative
Boundary value problem
Green’s function
Lyapunov inequality
Eigenvalue estimate
spellingShingle Riemann-Liouville type fractional derivative
Boundary value problem
Green’s function
Lyapunov inequality
Eigenvalue estimate
Jonnalagadda,Jagan Mohan
Basua,Debananda
Lyapunov-type inequality for a Riemann-Liouville type fractional boundary value problem with anti-periodic boundary conditions
description Abstract In this article, we establish a Lyapunov-type inequality for a two-point Riemann-Liouville type fractional boundary value problem associated with well-posed anti-periodic boundary conditions. As an application, we estimate a lower bound for the eigenvalue of the corresponding fractional eigenvalue problem.
author Jonnalagadda,Jagan Mohan
Basua,Debananda
author_facet Jonnalagadda,Jagan Mohan
Basua,Debananda
author_sort Jonnalagadda,Jagan Mohan
title Lyapunov-type inequality for a Riemann-Liouville type fractional boundary value problem with anti-periodic boundary conditions
title_short Lyapunov-type inequality for a Riemann-Liouville type fractional boundary value problem with anti-periodic boundary conditions
title_full Lyapunov-type inequality for a Riemann-Liouville type fractional boundary value problem with anti-periodic boundary conditions
title_fullStr Lyapunov-type inequality for a Riemann-Liouville type fractional boundary value problem with anti-periodic boundary conditions
title_full_unstemmed Lyapunov-type inequality for a Riemann-Liouville type fractional boundary value problem with anti-periodic boundary conditions
title_sort lyapunov-type inequality for a riemann-liouville type fractional boundary value problem with anti-periodic boundary conditions
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400873
work_keys_str_mv AT jonnalagaddajaganmohan lyapunovtypeinequalityforariemannliouvilletypefractionalboundaryvalueproblemwithantiperiodicboundaryconditions
AT basuadebananda lyapunovtypeinequalityforariemannliouvilletypefractionalboundaryvalueproblemwithantiperiodicboundaryconditions
_version_ 1718439909338906624