Total irregularity strength of some cubic graphs

Abstract Let G = (V;E) be a graph. A total labeling ψ : V ⋃ E → {1, 2, ....k} is called totally irregular total k-labeling of G if every two distinct vertices u and v in V (G) satisfy wt(u) ≠wt(v); and every two distinct edges u 1 u 2 and v 1 v 2 in E(G) sa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ibrahim,Muhammad, Khan,S., Asim,Muhammad Ahsan, Waseem,Muhammad
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400905
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000400905
record_format dspace
spelling oai:scielo:S0716-091720210004009052021-08-12Total irregularity strength of some cubic graphsIbrahim,MuhammadKhan,S.Asim,Muhammad AhsanWaseem,Muhammad Total edge irregularity strength Total vertex irregularity strength Total irregularity strength Plane graph Crossed prism graph Necklace graph Goldberg snark graph Abstract Let G = (V;E) be a graph. A total labeling ψ : V ⋃ E → {1, 2, ....k} is called totally irregular total k-labeling of G if every two distinct vertices u and v in V (G) satisfy wt(u) ≠wt(v); and every two distinct edges u 1 u 2 and v 1 v 2 in E(G) satisfy wt(u 1 u 2 ) ≠ wt(v 1 v 2 ); where wt(u) = ψ (u) + ∑ uv∊E(G) ψ(uv) and wt(u 1 u 2 ) = ψ(u 1 ) + ψ(u 1 u 2 ) + ψ(u 2 ): The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by ts(G): In this paper, we determine the exact value of the total irregularity strength of cubic graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.4 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400905en10.22199/issn.0717-6279-3715
institution Scielo Chile
collection Scielo Chile
language English
topic Total edge irregularity strength
Total vertex irregularity strength
Total irregularity strength
Plane graph
Crossed prism graph
Necklace graph
Goldberg snark graph
spellingShingle Total edge irregularity strength
Total vertex irregularity strength
Total irregularity strength
Plane graph
Crossed prism graph
Necklace graph
Goldberg snark graph
Ibrahim,Muhammad
Khan,S.
Asim,Muhammad Ahsan
Waseem,Muhammad
Total irregularity strength of some cubic graphs
description Abstract Let G = (V;E) be a graph. A total labeling ψ : V ⋃ E → {1, 2, ....k} is called totally irregular total k-labeling of G if every two distinct vertices u and v in V (G) satisfy wt(u) ≠wt(v); and every two distinct edges u 1 u 2 and v 1 v 2 in E(G) satisfy wt(u 1 u 2 ) ≠ wt(v 1 v 2 ); where wt(u) = ψ (u) + ∑ uv∊E(G) ψ(uv) and wt(u 1 u 2 ) = ψ(u 1 ) + ψ(u 1 u 2 ) + ψ(u 2 ): The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by ts(G): In this paper, we determine the exact value of the total irregularity strength of cubic graphs.
author Ibrahim,Muhammad
Khan,S.
Asim,Muhammad Ahsan
Waseem,Muhammad
author_facet Ibrahim,Muhammad
Khan,S.
Asim,Muhammad Ahsan
Waseem,Muhammad
author_sort Ibrahim,Muhammad
title Total irregularity strength of some cubic graphs
title_short Total irregularity strength of some cubic graphs
title_full Total irregularity strength of some cubic graphs
title_fullStr Total irregularity strength of some cubic graphs
title_full_unstemmed Total irregularity strength of some cubic graphs
title_sort total irregularity strength of some cubic graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400905
work_keys_str_mv AT ibrahimmuhammad totalirregularitystrengthofsomecubicgraphs
AT khans totalirregularitystrengthofsomecubicgraphs
AT asimmuhammadahsan totalirregularitystrengthofsomecubicgraphs
AT waseemmuhammad totalirregularitystrengthofsomecubicgraphs
_version_ 1718439910292062208