Total irregularity strength of some cubic graphs
Abstract Let G = (V;E) be a graph. A total labeling ψ : V ⋃ E → {1, 2, ....k} is called totally irregular total k-labeling of G if every two distinct vertices u and v in V (G) satisfy wt(u) ≠wt(v); and every two distinct edges u 1 u 2 and v 1 v 2 in E(G) sa...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400905 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172021000400905 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720210004009052021-08-12Total irregularity strength of some cubic graphsIbrahim,MuhammadKhan,S.Asim,Muhammad AhsanWaseem,Muhammad Total edge irregularity strength Total vertex irregularity strength Total irregularity strength Plane graph Crossed prism graph Necklace graph Goldberg snark graph Abstract Let G = (V;E) be a graph. A total labeling ψ : V ⋃ E → {1, 2, ....k} is called totally irregular total k-labeling of G if every two distinct vertices u and v in V (G) satisfy wt(u) ≠wt(v); and every two distinct edges u 1 u 2 and v 1 v 2 in E(G) satisfy wt(u 1 u 2 ) ≠ wt(v 1 v 2 ); where wt(u) = ψ (u) + ∑ uv∊E(G) ψ(uv) and wt(u 1 u 2 ) = ψ(u 1 ) + ψ(u 1 u 2 ) + ψ(u 2 ): The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by ts(G): In this paper, we determine the exact value of the total irregularity strength of cubic graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.4 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400905en10.22199/issn.0717-6279-3715 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Total edge irregularity strength Total vertex irregularity strength Total irregularity strength Plane graph Crossed prism graph Necklace graph Goldberg snark graph |
spellingShingle |
Total edge irregularity strength Total vertex irregularity strength Total irregularity strength Plane graph Crossed prism graph Necklace graph Goldberg snark graph Ibrahim,Muhammad Khan,S. Asim,Muhammad Ahsan Waseem,Muhammad Total irregularity strength of some cubic graphs |
description |
Abstract Let G = (V;E) be a graph. A total labeling ψ : V ⋃ E → {1, 2, ....k} is called totally irregular total k-labeling of G if every two distinct vertices u and v in V (G) satisfy wt(u) ≠wt(v); and every two distinct edges u 1 u 2 and v 1 v 2 in E(G) satisfy wt(u 1 u 2 ) ≠ wt(v 1 v 2 ); where wt(u) = ψ (u) + ∑ uv∊E(G) ψ(uv) and wt(u 1 u 2 ) = ψ(u 1 ) + ψ(u 1 u 2 ) + ψ(u 2 ): The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by ts(G): In this paper, we determine the exact value of the total irregularity strength of cubic graphs. |
author |
Ibrahim,Muhammad Khan,S. Asim,Muhammad Ahsan Waseem,Muhammad |
author_facet |
Ibrahim,Muhammad Khan,S. Asim,Muhammad Ahsan Waseem,Muhammad |
author_sort |
Ibrahim,Muhammad |
title |
Total irregularity strength of some cubic graphs |
title_short |
Total irregularity strength of some cubic graphs |
title_full |
Total irregularity strength of some cubic graphs |
title_fullStr |
Total irregularity strength of some cubic graphs |
title_full_unstemmed |
Total irregularity strength of some cubic graphs |
title_sort |
total irregularity strength of some cubic graphs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2021 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400905 |
work_keys_str_mv |
AT ibrahimmuhammad totalirregularitystrengthofsomecubicgraphs AT khans totalirregularitystrengthofsomecubicgraphs AT asimmuhammadahsan totalirregularitystrengthofsomecubicgraphs AT waseemmuhammad totalirregularitystrengthofsomecubicgraphs |
_version_ |
1718439910292062208 |