Basarab loop and the generators of its total multiplication group
Abstract A loop (Q, ·) is called a Basarab loop if the identities: (x·yxρ)(xz) = x· yz and (yx)·(xλz ·x) = yz ·x hold. It was shown that the left, right and middle nuclei of the Basarab loop coincide, and the nucleus of a Basarab loop is the set of elements x whose middle inner map...
Guardado en:
Autores principales: | Jaiyéọlá,T. G., Effiong,G. O. |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400939 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New algebraic properties of middle Bol loops II
por: Jaiyéolá,T. G., et al.
Publicado: (2021) -
The structure of affine buildings
por: Weiss, Richard M. (Richard Mark), 1946-
Publicado: (2009) -
On certain isotopic maps of central loops
por: Olusola Adeniran,John, et al.
Publicado: (2011) -
M/F Changes after T-loop Upper Horizontal Bending in Segmented Arch Mechanics
por: Muñoz-Rendón,Wilson A, et al.
Publicado: (2016) -
Does the Loop Quantum <i>μ</i><sub>o</sub> Scheme Permit Black Hole Formation?
por: Bao-Fei Li, et al.
Publicado: (2021)