Graphs of edge-to-vertex detour number 2

Abstract For two vertices u and v in a graph G = (V,E), the detour distance D(u, v) is the length of a longest u − v path in G. A u − v path of length D(u, v) is called a u−v detour. For subsets A and B of V, the detour distance D(A, B) is defined as D(A, B) = min{D(x,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Santhakumaran,A. P.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400963
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000400963
record_format dspace
spelling oai:scielo:S0716-091720210004009632021-08-12Graphs of edge-to-vertex detour number 2Santhakumaran,A. P. Detour Edge-to-vertex detour set Edge-to-vertex detour basis Edge-to-vertex detour number Abstract For two vertices u and v in a graph G = (V,E), the detour distance D(u, v) is the length of a longest u − v path in G. A u − v path of length D(u, v) is called a u−v detour. For subsets A and B of V, the detour distance D(A, B) is defined as D(A, B) = min{D(x, y) : x ∈ A, y ∈ B}. A u − v path of length D(A, B) is called an A-B detour joining the sets A, B ⊆ V where u ∈ A and v ∈ B. A vertex x is said to lie on an A − B detour if x is a vertex of some A − B detour. A set S ⊆ E is called an edge-to-vertex detour set if every vertex of G is incident with an edge of S or lies on a detour joining a pair of edges of S. The edge-to-vertex detour number dn 2 (G) of G is the minimum order of its edge-to-vertex detour sets and any edge-to-vertex detour set of order dn 2 (G) is an edge-to-vertex detour basis of G. Graphs G of size q for which dn 2 (G)=2 are characterized.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.4 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400963en10.22199/issn.0717-6279-4454
institution Scielo Chile
collection Scielo Chile
language English
topic Detour
Edge-to-vertex detour set
Edge-to-vertex detour basis
Edge-to-vertex detour number
spellingShingle Detour
Edge-to-vertex detour set
Edge-to-vertex detour basis
Edge-to-vertex detour number
Santhakumaran,A. P.
Graphs of edge-to-vertex detour number 2
description Abstract For two vertices u and v in a graph G = (V,E), the detour distance D(u, v) is the length of a longest u − v path in G. A u − v path of length D(u, v) is called a u−v detour. For subsets A and B of V, the detour distance D(A, B) is defined as D(A, B) = min{D(x, y) : x ∈ A, y ∈ B}. A u − v path of length D(A, B) is called an A-B detour joining the sets A, B ⊆ V where u ∈ A and v ∈ B. A vertex x is said to lie on an A − B detour if x is a vertex of some A − B detour. A set S ⊆ E is called an edge-to-vertex detour set if every vertex of G is incident with an edge of S or lies on a detour joining a pair of edges of S. The edge-to-vertex detour number dn 2 (G) of G is the minimum order of its edge-to-vertex detour sets and any edge-to-vertex detour set of order dn 2 (G) is an edge-to-vertex detour basis of G. Graphs G of size q for which dn 2 (G)=2 are characterized.
author Santhakumaran,A. P.
author_facet Santhakumaran,A. P.
author_sort Santhakumaran,A. P.
title Graphs of edge-to-vertex detour number 2
title_short Graphs of edge-to-vertex detour number 2
title_full Graphs of edge-to-vertex detour number 2
title_fullStr Graphs of edge-to-vertex detour number 2
title_full_unstemmed Graphs of edge-to-vertex detour number 2
title_sort graphs of edge-to-vertex detour number 2
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000400963
work_keys_str_mv AT santhakumaranap graphsofedgetovertexdetournumber2
_version_ 1718439911668842496