On a two-fold cover 2.(26·G 2 (2)) of a maximal subgroup of Rudvalis group Ru

Abstract The Schur multiplier M(Ḡ 1) ≅ 4 of the maximal subgroup Ḡ 1 = 26· G 2(2) of the Rudvalis sporadic simple group Ru is a cyclic group of order 4. Hence a full representative group R of the type R = 4.(26· G2(2)) exists for Ḡ 1. Furthermore, Ḡ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Prins,Abraham Love
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000401011
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000401011
record_format dspace
spelling oai:scielo:S0716-091720210004010112021-08-12On a two-fold cover 2.(26·G 2 (2)) of a maximal subgroup of Rudvalis group RuPrins,Abraham Love Non-split extension Projective character table Factor set Schur multiplier Representation group Inertia factor groups Fischer matrices Abstract The Schur multiplier M(Ḡ 1) ≅ 4 of the maximal subgroup Ḡ 1 = 26· G 2(2) of the Rudvalis sporadic simple group Ru is a cyclic group of order 4. Hence a full representative group R of the type R = 4.(26· G2(2)) exists for Ḡ 1. Furthermore, Ḡ 1 will have four sets IrrP roj(Ḡ 1, αi) of irreducible projective characters, where the associated factor sets α1, α2, α3 and α4, have orders of 1, 2, 4 and 4, respectively. In this paper, we will deal with a 2-fold cover 2. Ḡ 1 of Ḡ 1 which can be treated as a non-split extension of the form Ḡ = 27· G2(2). The ordinary character table of Ḡ will be computed using the technique of the so-called Fischer matrices. Routines written in the computer algebra system GAP will be presented to compute the conjugacy classes and Fischer matrices of Ḡ and as well as the sizes of the sets |IrrProj(Hi, αi)| associated with each inertia factor Hi. From the ordinary irreducible characters Irr(Ḡ) of Ḡ, the set IrrProj(Ḡ 1, α2) of irreducible projective characters of Ḡ 1 with factor set α2 such that α2 2 = 1, can be obtained.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.4 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000401011en10.22199/issn.0717-6279-4574
institution Scielo Chile
collection Scielo Chile
language English
topic Non-split extension
Projective character table
Factor set
Schur multiplier
Representation group
Inertia factor groups
Fischer matrices
spellingShingle Non-split extension
Projective character table
Factor set
Schur multiplier
Representation group
Inertia factor groups
Fischer matrices
Prins,Abraham Love
On a two-fold cover 2.(26·G 2 (2)) of a maximal subgroup of Rudvalis group Ru
description Abstract The Schur multiplier M(Ḡ 1) ≅ 4 of the maximal subgroup Ḡ 1 = 26· G 2(2) of the Rudvalis sporadic simple group Ru is a cyclic group of order 4. Hence a full representative group R of the type R = 4.(26· G2(2)) exists for Ḡ 1. Furthermore, Ḡ 1 will have four sets IrrP roj(Ḡ 1, αi) of irreducible projective characters, where the associated factor sets α1, α2, α3 and α4, have orders of 1, 2, 4 and 4, respectively. In this paper, we will deal with a 2-fold cover 2. Ḡ 1 of Ḡ 1 which can be treated as a non-split extension of the form Ḡ = 27· G2(2). The ordinary character table of Ḡ will be computed using the technique of the so-called Fischer matrices. Routines written in the computer algebra system GAP will be presented to compute the conjugacy classes and Fischer matrices of Ḡ and as well as the sizes of the sets |IrrProj(Hi, αi)| associated with each inertia factor Hi. From the ordinary irreducible characters Irr(Ḡ) of Ḡ, the set IrrProj(Ḡ 1, α2) of irreducible projective characters of Ḡ 1 with factor set α2 such that α2 2 = 1, can be obtained.
author Prins,Abraham Love
author_facet Prins,Abraham Love
author_sort Prins,Abraham Love
title On a two-fold cover 2.(26·G 2 (2)) of a maximal subgroup of Rudvalis group Ru
title_short On a two-fold cover 2.(26·G 2 (2)) of a maximal subgroup of Rudvalis group Ru
title_full On a two-fold cover 2.(26·G 2 (2)) of a maximal subgroup of Rudvalis group Ru
title_fullStr On a two-fold cover 2.(26·G 2 (2)) of a maximal subgroup of Rudvalis group Ru
title_full_unstemmed On a two-fold cover 2.(26·G 2 (2)) of a maximal subgroup of Rudvalis group Ru
title_sort on a two-fold cover 2.(26·g 2 (2)) of a maximal subgroup of rudvalis group ru
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000401011
work_keys_str_mv AT prinsabrahamlove onatwofoldcover226g22ofamaximalsubgroupofrudvalisgroupru
_version_ 1718439913335029760