k-super cube root cube mean labeling of graphs

Abstract Consider a graph G with |V (G)| = p and |E(G)| = q and let f : V (G) → {k, k + 1, k + 2, . . . p + q + k − 1}} be an injective function. The induced edge labeling f ∗ for a vertex labeling f is defined by f ∗ (e) = for all e = uv ∈ E(G) is b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Princy Kala,V.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501097
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Consider a graph G with |V (G)| = p and |E(G)| = q and let f : V (G) → {k, k + 1, k + 2, . . . p + q + k − 1}} be an injective function. The induced edge labeling f ∗ for a vertex labeling f is defined by f ∗ (e) = for all e = uv ∈ E(G) is bijective. If f(V (G)) ∪ {f ∗ (e) : e ∈ E(G)} = {k, k + 1, k + 2, . . . , p + q + k − 1}, then f is called a k-super cube root cube mean labeling. If such labeling exists, then G is a k-super cube root cube mean graph. In this paper, I introduce k-super cube root cube mean labeling and prove the existence of this labeling to the graphs viz., triangular snake graph T n , double triangular snake graph D(T n ), Quadrilateral snake graph Q n , double quadrilateral snake graph D(Q n ), alternate triangular snake graph A(T n ), alternate double triangular snake graph AD(Tn), alternate quadrilateral snake graph A(Q n ), & alternate double quadrilateral snake graph AD(Q n ).