k-super cube root cube mean labeling of graphs

Abstract Consider a graph G with |V (G)| = p and |E(G)| = q and let f : V (G) → {k, k + 1, k + 2, . . . p + q + k − 1}} be an injective function. The induced edge labeling f ∗ for a vertex labeling f is defined by f ∗ (e) = for all e = uv ∈ E(G) is b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Princy Kala,V.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501097
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000501097
record_format dspace
spelling oai:scielo:S0716-091720210005010972021-10-05k-super cube root cube mean labeling of graphsPrincy Kala,V. k-super cube root cube mean labeling k-super cube root cube mean graph snake graph alternate snake graph Abstract Consider a graph G with |V (G)| = p and |E(G)| = q and let f : V (G) → {k, k + 1, k + 2, . . . p + q + k − 1}} be an injective function. The induced edge labeling f ∗ for a vertex labeling f is defined by f ∗ (e) = for all e = uv ∈ E(G) is bijective. If f(V (G)) ∪ {f ∗ (e) : e ∈ E(G)} = {k, k + 1, k + 2, . . . , p + q + k − 1}, then f is called a k-super cube root cube mean labeling. If such labeling exists, then G is a k-super cube root cube mean graph. In this paper, I introduce k-super cube root cube mean labeling and prove the existence of this labeling to the graphs viz., triangular snake graph T n , double triangular snake graph D(T n ), Quadrilateral snake graph Q n , double quadrilateral snake graph D(Q n ), alternate triangular snake graph A(T n ), alternate double triangular snake graph AD(Tn), alternate quadrilateral snake graph A(Q n ), & alternate double quadrilateral snake graph AD(Q n ).info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.5 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501097en10.22199/issn.0717-6279-4258
institution Scielo Chile
collection Scielo Chile
language English
topic k-super cube root cube mean labeling
k-super cube root cube mean graph
snake graph
alternate snake graph
spellingShingle k-super cube root cube mean labeling
k-super cube root cube mean graph
snake graph
alternate snake graph
Princy Kala,V.
k-super cube root cube mean labeling of graphs
description Abstract Consider a graph G with |V (G)| = p and |E(G)| = q and let f : V (G) → {k, k + 1, k + 2, . . . p + q + k − 1}} be an injective function. The induced edge labeling f ∗ for a vertex labeling f is defined by f ∗ (e) = for all e = uv ∈ E(G) is bijective. If f(V (G)) ∪ {f ∗ (e) : e ∈ E(G)} = {k, k + 1, k + 2, . . . , p + q + k − 1}, then f is called a k-super cube root cube mean labeling. If such labeling exists, then G is a k-super cube root cube mean graph. In this paper, I introduce k-super cube root cube mean labeling and prove the existence of this labeling to the graphs viz., triangular snake graph T n , double triangular snake graph D(T n ), Quadrilateral snake graph Q n , double quadrilateral snake graph D(Q n ), alternate triangular snake graph A(T n ), alternate double triangular snake graph AD(Tn), alternate quadrilateral snake graph A(Q n ), & alternate double quadrilateral snake graph AD(Q n ).
author Princy Kala,V.
author_facet Princy Kala,V.
author_sort Princy Kala,V.
title k-super cube root cube mean labeling of graphs
title_short k-super cube root cube mean labeling of graphs
title_full k-super cube root cube mean labeling of graphs
title_fullStr k-super cube root cube mean labeling of graphs
title_full_unstemmed k-super cube root cube mean labeling of graphs
title_sort k-super cube root cube mean labeling of graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501097
work_keys_str_mv AT princykalav ksupercuberootcubemeanlabelingofgraphs
_version_ 1718439915287478272