Vertex cover and edge-vertex domination in tres
Abstract Let G = (V,E) be a simple graph. An edge e ∈ E(G) edge-vertex dominates a vertex v ∈ V (G) if e is incident with v or e is incident with a vertex adjacent to v. A subset D ⊆ E(G) is an edge-vertex dominating set of a graph G if every vertex of G is edge-vertex...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501147 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172021000501147 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720210005011472021-10-05Vertex cover and edge-vertex domination in tresSenthilkumar,B.Kumar,H. NareshVenkatakrishnan,Y. B. Edge vertex dominating set vertex cover trees Abstract Let G = (V,E) be a simple graph. An edge e ∈ E(G) edge-vertex dominates a vertex v ∈ V (G) if e is incident with v or e is incident with a vertex adjacent to v. A subset D ⊆ E(G) is an edge-vertex dominating set of a graph G if every vertex of G is edge-vertex dominated by an edge of D. A vertex cover of G is a set C ⊆ V such that for each edge uv ∈ E at least one of u and v is in C. We characterize trees with edge-vertex domination number equals vertex covering number.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.5 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501147en10.22199/issn.0717-6279-3532 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Edge vertex dominating set vertex cover trees |
spellingShingle |
Edge vertex dominating set vertex cover trees Senthilkumar,B. Kumar,H. Naresh Venkatakrishnan,Y. B. Vertex cover and edge-vertex domination in tres |
description |
Abstract Let G = (V,E) be a simple graph. An edge e ∈ E(G) edge-vertex dominates a vertex v ∈ V (G) if e is incident with v or e is incident with a vertex adjacent to v. A subset D ⊆ E(G) is an edge-vertex dominating set of a graph G if every vertex of G is edge-vertex dominated by an edge of D. A vertex cover of G is a set C ⊆ V such that for each edge uv ∈ E at least one of u and v is in C. We characterize trees with edge-vertex domination number equals vertex covering number. |
author |
Senthilkumar,B. Kumar,H. Naresh Venkatakrishnan,Y. B. |
author_facet |
Senthilkumar,B. Kumar,H. Naresh Venkatakrishnan,Y. B. |
author_sort |
Senthilkumar,B. |
title |
Vertex cover and edge-vertex domination in tres |
title_short |
Vertex cover and edge-vertex domination in tres |
title_full |
Vertex cover and edge-vertex domination in tres |
title_fullStr |
Vertex cover and edge-vertex domination in tres |
title_full_unstemmed |
Vertex cover and edge-vertex domination in tres |
title_sort |
vertex cover and edge-vertex domination in tres |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2021 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501147 |
work_keys_str_mv |
AT senthilkumarb vertexcoverandedgevertexdominationintres AT kumarhnaresh vertexcoverandedgevertexdominationintres AT venkatakrishnanyb vertexcoverandedgevertexdominationintres |
_version_ |
1718439916262653952 |