Some hyperstability results of a p-radical functional equation related to quartic mappings in non-Archimedean Banach spaces
Abstract The aim of this paper is to introduce and solve the following p-radical functional equation related to quartic mappings where f is a mapping from R into a vector space X and p ≥ 3 is an odd natural number. Using an analogue version of Brzdȩk’s fixed point theo...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501155 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The aim of this paper is to introduce and solve the following p-radical functional equation related to quartic mappings where f is a mapping from R into a vector space X and p ≥ 3 is an odd natural number. Using an analogue version of Brzdȩk’s fixed point theorem [13], we establish some hyperstability results for the considered equation in non-Archimedean Banach spaces. Also, we give some hyperstability results for the inhomogeneous p-radical functional equation related to quartic mapping. |
---|