The distribution of zeros of solutions for a class of third order differential equation
Abstract For third order linear differential equations of the form (r(t)x’ (t))’’ + p(t)x’ (t) + q(t)x(t)=0, we will establish lower bounds for the distance between zeros of a solution and/or its derivatives. The main results will be proved by making use of H...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501301 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172021000501301 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720210005013012021-10-05The distribution of zeros of solutions for a class of third order differential equationCesarano,C.Arahet,M. A.Al-shami,T. M. Third order differential equations Opial and Hardy inequalities Abstract For third order linear differential equations of the form (r(t)x’ (t))’’ + p(t)x’ (t) + q(t)x(t)=0, we will establish lower bounds for the distance between zeros of a solution and/or its derivatives. The main results will be proved by making use of Hardy’s inequality, some generalizations of Opial’s inequality and Boyd’s inequality.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.5 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501301en10.22199/issn.0717-6279-4002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Third order differential equations Opial and Hardy inequalities |
spellingShingle |
Third order differential equations Opial and Hardy inequalities Cesarano,C. Arahet,M. A. Al-shami,T. M. The distribution of zeros of solutions for a class of third order differential equation |
description |
Abstract For third order linear differential equations of the form (r(t)x’ (t))’’ + p(t)x’ (t) + q(t)x(t)=0, we will establish lower bounds for the distance between zeros of a solution and/or its derivatives. The main results will be proved by making use of Hardy’s inequality, some generalizations of Opial’s inequality and Boyd’s inequality. |
author |
Cesarano,C. Arahet,M. A. Al-shami,T. M. |
author_facet |
Cesarano,C. Arahet,M. A. Al-shami,T. M. |
author_sort |
Cesarano,C. |
title |
The distribution of zeros of solutions for a class of third order differential equation |
title_short |
The distribution of zeros of solutions for a class of third order differential equation |
title_full |
The distribution of zeros of solutions for a class of third order differential equation |
title_fullStr |
The distribution of zeros of solutions for a class of third order differential equation |
title_full_unstemmed |
The distribution of zeros of solutions for a class of third order differential equation |
title_sort |
distribution of zeros of solutions for a class of third order differential equation |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2021 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501301 |
work_keys_str_mv |
AT cesaranoc thedistributionofzerosofsolutionsforaclassofthirdorderdifferentialequation AT arahetma thedistributionofzerosofsolutionsforaclassofthirdorderdifferentialequation AT alshamitm thedistributionofzerosofsolutionsforaclassofthirdorderdifferentialequation AT cesaranoc distributionofzerosofsolutionsforaclassofthirdorderdifferentialequation AT arahetma distributionofzerosofsolutionsforaclassofthirdorderdifferentialequation AT alshamitm distributionofzerosofsolutionsforaclassofthirdorderdifferentialequation |
_version_ |
1718439919536308224 |