The distribution of zeros of solutions for a class of third order differential equation

Abstract For third order linear differential equations of the form (r(t)x’ (t))’’ + p(t)x’ (t) + q(t)x(t)=0, we will establish lower bounds for the distance between zeros of a solution and/or its derivatives. The main results will be proved by making use of H...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cesarano,C., Arahet,M. A., Al-shami,T. M.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501301
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000501301
record_format dspace
spelling oai:scielo:S0716-091720210005013012021-10-05The distribution of zeros of solutions for a class of third order differential equationCesarano,C.Arahet,M. A.Al-shami,T. M. Third order differential equations Opial and Hardy inequalities Abstract For third order linear differential equations of the form (r(t)x’ (t))’’ + p(t)x’ (t) + q(t)x(t)=0, we will establish lower bounds for the distance between zeros of a solution and/or its derivatives. The main results will be proved by making use of Hardy’s inequality, some generalizations of Opial’s inequality and Boyd’s inequality.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.5 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501301en10.22199/issn.0717-6279-4002
institution Scielo Chile
collection Scielo Chile
language English
topic Third order differential equations
Opial and Hardy inequalities
spellingShingle Third order differential equations
Opial and Hardy inequalities
Cesarano,C.
Arahet,M. A.
Al-shami,T. M.
The distribution of zeros of solutions for a class of third order differential equation
description Abstract For third order linear differential equations of the form (r(t)x’ (t))’’ + p(t)x’ (t) + q(t)x(t)=0, we will establish lower bounds for the distance between zeros of a solution and/or its derivatives. The main results will be proved by making use of Hardy’s inequality, some generalizations of Opial’s inequality and Boyd’s inequality.
author Cesarano,C.
Arahet,M. A.
Al-shami,T. M.
author_facet Cesarano,C.
Arahet,M. A.
Al-shami,T. M.
author_sort Cesarano,C.
title The distribution of zeros of solutions for a class of third order differential equation
title_short The distribution of zeros of solutions for a class of third order differential equation
title_full The distribution of zeros of solutions for a class of third order differential equation
title_fullStr The distribution of zeros of solutions for a class of third order differential equation
title_full_unstemmed The distribution of zeros of solutions for a class of third order differential equation
title_sort distribution of zeros of solutions for a class of third order differential equation
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000501301
work_keys_str_mv AT cesaranoc thedistributionofzerosofsolutionsforaclassofthirdorderdifferentialequation
AT arahetma thedistributionofzerosofsolutionsforaclassofthirdorderdifferentialequation
AT alshamitm thedistributionofzerosofsolutionsforaclassofthirdorderdifferentialequation
AT cesaranoc distributionofzerosofsolutionsforaclassofthirdorderdifferentialequation
AT arahetma distributionofzerosofsolutionsforaclassofthirdorderdifferentialequation
AT alshamitm distributionofzerosofsolutionsforaclassofthirdorderdifferentialequation
_version_ 1718439919536308224