Trans fatty acid isomers in human health and in the food industry

Trans fatty acids are unsaturated fatty acids with at least one double bond in the trans configuration. These fatty acids occur naturally in dairy and other natural fats and in some plants. However, industrial hydrogenation of vegetable or marine oils is largely the main source of trans fatty acids...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: VALENZUELA,ALFONSO, MORGADO,NORA
Lenguaje:English
Publicado: Sociedad de Biología de Chile 1999
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97601999000400007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Trans fatty acids are unsaturated fatty acids with at least one double bond in the trans configuration. These fatty acids occur naturally in dairy and other natural fats and in some plants. However, industrial hydrogenation of vegetable or marine oils is largely the main source of trans fatty acids in our diet. The metabolic effect of trans isomers are today a matter of controversy generating diverse extreme positions in light of biochemical, nutritional, and epidemiological studies. Trans fatty acids also have been implicated in the etiology of various metabolic and functional disorders, but the main concern about its health effects arose because the structural similarity of these isomers to saturated fatty acids, the lack of specific metabolic functions, and its competition with essential fatty acids. The ingestion of trans fatty acids increases low density lipoprotein (LDL) to a degree similar to that of saturated fats, but it also reduces high density lipoproteins (HDL), therefore trans isomers are considered more atherogenic than saturated fatty acids. Trans isomers increase lipoprotein(a), a non-dietary-related risk of atherogenesis, to levels higher than the corresponding chain-length saturated fatty acid. There is little evidence that trans fatty acids are related to cancer risk at any of the major cancer sites. Considerable improvement has been obtained with respect to the metabolic effect of trans fatty acids due the development of analytical procedures to evaluate the different isomers in both biological and food samples. The oleochemical food industries have developed several strategies to reduce the trans content of hydrogenated oils, and now margarine and other hydrogenated-derived products containing low trans or virtually zero trans are available and can be obtained in the retail market. The present review provides an outline of the present status of trans fatty acids including origin, analytical procedures, estimated ingestion, metabolic effects, efforts to reduce trans isomers in our diet, and considerations for future prospects on trans isomers