Inhibitory Effects of Red Wine Extracts on Endothelial-Dependent Adhesive Interactions with Monocytes Induced by Oxysterols
Red wine polyphenolic compounds have been demonstrated to possess antioxidant properties, and several studies have suggested that they might constitute a relevant dietary factor in the protection from coronary heart disease. The aim of the present study is to examine whether red wine extracts (RWE)...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad de Biología de Chile
2004
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602004000200009 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Red wine polyphenolic compounds have been demonstrated to possess antioxidant properties, and several studies have suggested that they might constitute a relevant dietary factor in the protection from coronary heart disease. The aim of the present study is to examine whether red wine extracts (RWE) can ameliorate oxysterol-induced endothelial response, and whether inhibition of adhesion molecule expression is involved in monocyte adhesion to endothelial cells. Surface expression and mRNA levels of adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1) were determined by ELISA and RT-PCR performed on human aortic endothelial cells (HAEC) monolayers stimulated with 7b-hydroxycholesterol or 25-hydroxycholesterol. Incubation of HAEC with oxysterols (10 muM) increased expression of adhesion molecules in a time-dependent manner. Pretreatment of HAEC with RWE at final concentrations of 1, 10, and 100 ng/ml significantly inhibited the increase of surface protein expression and mRNA levels. Adherence of monocytes to oxysterol-stimulated HAEC was increased compared to that of unstimulated cells. Treatment of HAEC with RWE significantly inhibited adherence of monocytes. These results suggest that RWE works as an anti-atherogenic agent through the inhibition of endothelial-dependent adhesive interactions with monocytes induced by oxysterols |
---|