BrainTV: a novel approach for online mapping of human brain functions
Our understanding of the brain's functional organisation has greatly benefited from occasional exploratory sessions during electrophysiological studies, trying various manipulations of an animal's environment to trigger responses in particular neurons. Famous examples of such exploration h...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad de Biología de Chile
2007
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602007000500004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-97602007000500004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-976020070005000042008-05-28BrainTV: a novel approach for online mapping of human brain functionsLACHAUX,JEAN-PHILIPPEJERBI,KARIMBERTRAND,OLIVIERMINOTTI,LORELLAHOFFMANN,DOMINIQUESCHOENDORFF,BENJAMINKAHANE,PHILIPPE speech gamma rhythm beta rhythm brain computer interface neurofeedback neural synchronization Our understanding of the brain's functional organisation has greatly benefited from occasional exploratory sessions during electrophysiological studies, trying various manipulations of an animal's environment to trigger responses in particular neurons. Famous examples of such exploration have unveiled various unexpected response properties, such as those of mirror neurons. This approach, which relies on the possibility to test online the reactivity of precise neural populations has no equivalent so far in humans. The present study proposes and applies a radically novel framework for mapping human brain functions in ecological situations based on a combination of a) exploratory sessions, using real-time electrophysiology to formulate hypotheses about the functional role of precise cortical regions and b) controlled experimental protocols specifically adapted to test these hypotheses. Using this two-stage approach with an epileptic patient candidate for surgery and implanted with intracerebral electrodes, we were able to precisely map high-level auditory functions in the patients' superior temporal lobe. We propose that this procedure constitutes at the least a useful complement of electrical cortical stimulations to map eloquent brain areas in epileptic patients before their surgery, but also a path of discovery for human functional brain mappinginfo:eu-repo/semantics/openAccessSociedad de Biología de ChileBiological Research v.40 n.4 20072007-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602007000500004en10.4067/S0716-97602007000500004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
speech gamma rhythm beta rhythm brain computer interface neurofeedback neural synchronization |
spellingShingle |
speech gamma rhythm beta rhythm brain computer interface neurofeedback neural synchronization LACHAUX,JEAN-PHILIPPE JERBI,KARIM BERTRAND,OLIVIER MINOTTI,LORELLA HOFFMANN,DOMINIQUE SCHOENDORFF,BENJAMIN KAHANE,PHILIPPE BrainTV: a novel approach for online mapping of human brain functions |
description |
Our understanding of the brain's functional organisation has greatly benefited from occasional exploratory sessions during electrophysiological studies, trying various manipulations of an animal's environment to trigger responses in particular neurons. Famous examples of such exploration have unveiled various unexpected response properties, such as those of mirror neurons. This approach, which relies on the possibility to test online the reactivity of precise neural populations has no equivalent so far in humans. The present study proposes and applies a radically novel framework for mapping human brain functions in ecological situations based on a combination of a) exploratory sessions, using real-time electrophysiology to formulate hypotheses about the functional role of precise cortical regions and b) controlled experimental protocols specifically adapted to test these hypotheses. Using this two-stage approach with an epileptic patient candidate for surgery and implanted with intracerebral electrodes, we were able to precisely map high-level auditory functions in the patients' superior temporal lobe. We propose that this procedure constitutes at the least a useful complement of electrical cortical stimulations to map eloquent brain areas in epileptic patients before their surgery, but also a path of discovery for human functional brain mapping |
author |
LACHAUX,JEAN-PHILIPPE JERBI,KARIM BERTRAND,OLIVIER MINOTTI,LORELLA HOFFMANN,DOMINIQUE SCHOENDORFF,BENJAMIN KAHANE,PHILIPPE |
author_facet |
LACHAUX,JEAN-PHILIPPE JERBI,KARIM BERTRAND,OLIVIER MINOTTI,LORELLA HOFFMANN,DOMINIQUE SCHOENDORFF,BENJAMIN KAHANE,PHILIPPE |
author_sort |
LACHAUX,JEAN-PHILIPPE |
title |
BrainTV: a novel approach for online mapping of human brain functions |
title_short |
BrainTV: a novel approach for online mapping of human brain functions |
title_full |
BrainTV: a novel approach for online mapping of human brain functions |
title_fullStr |
BrainTV: a novel approach for online mapping of human brain functions |
title_full_unstemmed |
BrainTV: a novel approach for online mapping of human brain functions |
title_sort |
braintv: a novel approach for online mapping of human brain functions |
publisher |
Sociedad de Biología de Chile |
publishDate |
2007 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602007000500004 |
work_keys_str_mv |
AT lachauxjeanphilippe braintvanovelapproachforonlinemappingofhumanbrainfunctions AT jerbikarim braintvanovelapproachforonlinemappingofhumanbrainfunctions AT bertrandolivier braintvanovelapproachforonlinemappingofhumanbrainfunctions AT minottilorella braintvanovelapproachforonlinemappingofhumanbrainfunctions AT hoffmanndominique braintvanovelapproachforonlinemappingofhumanbrainfunctions AT schoendorffbenjamin braintvanovelapproachforonlinemappingofhumanbrainfunctions AT kahanephilippe braintvanovelapproachforonlinemappingofhumanbrainfunctions |
_version_ |
1718441423643082752 |