Classification methods for ongoing EEG and MEG signals
Classification algorithms help predict the qualitative properties of a subject's mental state by extracting useful information from the highly multivariate non-invasive recordings of his brain activity. In particular, applying them to Magneto-encephalography (MEG) and electro-encephalography (E...
Guardado en:
Autores principales: | BESSERVE,MICHEL, JERBI,KARIM, LAURENT,FRANCOIS, BAILLET,SYLVAIN, MARTINERIE,JACQUES, GARNERO,LINE |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad de Biología de Chile
2007
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602007000500005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spatial sampling of MEG and EEG based on generalized spatial-frequency analysis and optimal design
por: Joonas Iivanainen, et al.
Publicado: (2021) -
Whole-brain propagating patterns in human resting-state brain activities
por: Yusuke Takeda, et al.
Publicado: (2021) -
The endless visuomotor calibration of reach-to-grasp actions
por: Robert Volcic, et al.
Publicado: (2018) -
Filter Bank Convolutional Neural Network for SSVEP Classification
por: Dechun Zhao, et al.
Publicado: (2021) -
EEG-Based Classification of the Driver Alertness State
por: Golz Martin, et al.
Publicado: (2020)