Dynamical Complexity in Cognitive Neural Networks

In the last twenty years an important effort in brain sciences, especially in cognitive science, has been the development of mathematical tool that can deal with the complexity of extensive recordings corresponding to the neuronal activity obtained from hundreds of neurons. We discuss here along wit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: GOLES,ERIC, PALACIOS,ADRIÁN G
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2007
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602007000500009
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-97602007000500009
record_format dspace
spelling oai:scielo:S0716-976020070005000092008-05-28Dynamical Complexity in Cognitive Neural NetworksGOLES,ERICPALACIOS,ADRIÁN G Artificial Neural Net Brain Dynamical Complexity Computational Neurosciences Cellular Automata In the last twenty years an important effort in brain sciences, especially in cognitive science, has been the development of mathematical tool that can deal with the complexity of extensive recordings corresponding to the neuronal activity obtained from hundreds of neurons. We discuss here along with some historical issues, advantages and limitations of Artificial Neural Networks (ANN) that can help to understand how simple brain circuits work and whether ANN can be helpful to understand brain neural complexityinfo:eu-repo/semantics/openAccessSociedad de Biología de ChileBiological Research v.40 n.4 20072007-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602007000500009en10.4067/S0716-97602007000500009
institution Scielo Chile
collection Scielo Chile
language English
topic Artificial
Neural Net
Brain
Dynamical Complexity
Computational Neurosciences
Cellular Automata
spellingShingle Artificial
Neural Net
Brain
Dynamical Complexity
Computational Neurosciences
Cellular Automata
GOLES,ERIC
PALACIOS,ADRIÁN G
Dynamical Complexity in Cognitive Neural Networks
description In the last twenty years an important effort in brain sciences, especially in cognitive science, has been the development of mathematical tool that can deal with the complexity of extensive recordings corresponding to the neuronal activity obtained from hundreds of neurons. We discuss here along with some historical issues, advantages and limitations of Artificial Neural Networks (ANN) that can help to understand how simple brain circuits work and whether ANN can be helpful to understand brain neural complexity
author GOLES,ERIC
PALACIOS,ADRIÁN G
author_facet GOLES,ERIC
PALACIOS,ADRIÁN G
author_sort GOLES,ERIC
title Dynamical Complexity in Cognitive Neural Networks
title_short Dynamical Complexity in Cognitive Neural Networks
title_full Dynamical Complexity in Cognitive Neural Networks
title_fullStr Dynamical Complexity in Cognitive Neural Networks
title_full_unstemmed Dynamical Complexity in Cognitive Neural Networks
title_sort dynamical complexity in cognitive neural networks
publisher Sociedad de Biología de Chile
publishDate 2007
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602007000500009
work_keys_str_mv AT goleseric dynamicalcomplexityincognitiveneuralnetworks
AT palaciosadriang dynamicalcomplexityincognitiveneuralnetworks
_version_ 1718441425214898176