Regional differences in veins wall viscosity, compliance. energetics and damping: analysis of the pressure-diameter relationship during cyclical overloads
Background: The characterization of the dynamic process of veins walls is essential to understand venous functioning under normal and pathological conditions. However, little work has been done on dynamic venous properties. Aim: To characterize vein compliance (C), viscosity (η), peak-strai...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad de Biología de Chile
2008
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602008000200012 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-97602008000200012 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-976020080002000122009-03-24Regional differences in veins wall viscosity, compliance. energetics and damping: analysis of the pressure-diameter relationship during cyclical overloadsZÓCALO,YANINABIA,DANIELLLUBERAS,SEBASTIÁNARMENTANO,RICARDO L compliance damping energetic vascular physiology venous wall viscosity Background: The characterization of the dynamic process of veins walls is essential to understand venous functioning under normal and pathological conditions. However, little work has been done on dynamic venous properties. Aim: To characterize vein compliance (C), viscosity (η), peak-strain (W St) and dissipated (W D) energy, damping (ξ), and their regional differences in order to evalúate their role in venous functioning during volume-pressure overloads. Methods: In a mock circulation, pressure (P) and diameter (D) of different veins (anterior cava, jugular and femoral; from 7 sheep), were registered during cyclical volume-pressure pulses. From the P-D relationship, C, W St and ξ (at low and high P-D leveis), η and W D were calculated. Resulls: For each vein there were P-dependent differences in biomechanical, energetics, and damping capability. There were regional-differences in C, η), W St and W D (p<0.05), but not in ξ. Conclusión: The regional-dependent differences in dynamics and energetics, and regional-similitude in damping could be important to ensure venous functioning during acute overloads. The lower C and higher W St and W D found in back-limb veins (femoral), commonly submitted to high volume-pressure loads (i.e. during walking), could be considered relevant to ensure adequate venous system functionality and venous wall protection simultaneously.info:eu-repo/semantics/openAccessSociedad de Biología de ChileBiological Research v.41 n.2 20082008-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602008000200012en10.4067/S0716-97602008000200012 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
compliance damping energetic vascular physiology venous wall viscosity |
spellingShingle |
compliance damping energetic vascular physiology venous wall viscosity ZÓCALO,YANINA BIA,DANIEL LLUBERAS,SEBASTIÁN ARMENTANO,RICARDO L Regional differences in veins wall viscosity, compliance. energetics and damping: analysis of the pressure-diameter relationship during cyclical overloads |
description |
Background: The characterization of the dynamic process of veins walls is essential to understand venous functioning under normal and pathological conditions. However, little work has been done on dynamic venous properties. Aim: To characterize vein compliance (C), viscosity (η), peak-strain (W St) and dissipated (W D) energy, damping (ξ), and their regional differences in order to evalúate their role in venous functioning during volume-pressure overloads. Methods: In a mock circulation, pressure (P) and diameter (D) of different veins (anterior cava, jugular and femoral; from 7 sheep), were registered during cyclical volume-pressure pulses. From the P-D relationship, C, W St and ξ (at low and high P-D leveis), η and W D were calculated. Resulls: For each vein there were P-dependent differences in biomechanical, energetics, and damping capability. There were regional-differences in C, η), W St and W D (p<0.05), but not in ξ. Conclusión: The regional-dependent differences in dynamics and energetics, and regional-similitude in damping could be important to ensure venous functioning during acute overloads. The lower C and higher W St and W D found in back-limb veins (femoral), commonly submitted to high volume-pressure loads (i.e. during walking), could be considered relevant to ensure adequate venous system functionality and venous wall protection simultaneously. |
author |
ZÓCALO,YANINA BIA,DANIEL LLUBERAS,SEBASTIÁN ARMENTANO,RICARDO L |
author_facet |
ZÓCALO,YANINA BIA,DANIEL LLUBERAS,SEBASTIÁN ARMENTANO,RICARDO L |
author_sort |
ZÓCALO,YANINA |
title |
Regional differences in veins wall viscosity, compliance. energetics and damping: analysis of the pressure-diameter relationship during cyclical overloads |
title_short |
Regional differences in veins wall viscosity, compliance. energetics and damping: analysis of the pressure-diameter relationship during cyclical overloads |
title_full |
Regional differences in veins wall viscosity, compliance. energetics and damping: analysis of the pressure-diameter relationship during cyclical overloads |
title_fullStr |
Regional differences in veins wall viscosity, compliance. energetics and damping: analysis of the pressure-diameter relationship during cyclical overloads |
title_full_unstemmed |
Regional differences in veins wall viscosity, compliance. energetics and damping: analysis of the pressure-diameter relationship during cyclical overloads |
title_sort |
regional differences in veins wall viscosity, compliance. energetics and damping: analysis of the pressure-diameter relationship during cyclical overloads |
publisher |
Sociedad de Biología de Chile |
publishDate |
2008 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602008000200012 |
work_keys_str_mv |
AT zocaloyanina regionaldifferencesinveinswallviscositycomplianceenergeticsanddampinganalysisofthepressurediameterrelationshipduringcyclicaloverloads AT biadaniel regionaldifferencesinveinswallviscositycomplianceenergeticsanddampinganalysisofthepressurediameterrelationshipduringcyclicaloverloads AT lluberassebastian regionaldifferencesinveinswallviscositycomplianceenergeticsanddampinganalysisofthepressurediameterrelationshipduringcyclicaloverloads AT armentanoricardol regionaldifferencesinveinswallviscositycomplianceenergeticsanddampinganalysisofthepressurediameterrelationshipduringcyclicaloverloads |
_version_ |
1718441433807978496 |