Nicotine-evoked cytosolic Ca2+ increase and cell depolarization in capillary endothelial cells of the bovine adrenal medulla

Endothelial cells are directly involved in many functions of the cardiovascular system by regulating blood flow and blood pressure through Ca2+ dependent exocitosis of vasoactive compounds. Using the Ca2+ indicator Fluo-3 and the patch-clamp technique, we show that bovine adrenal medulla capillary e...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: VINET,RAÚL, CORTÉS,MAGDALENA, LUXORO,MARIO, DELPIANO,MARCO A
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2009
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602009000100012
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Endothelial cells are directly involved in many functions of the cardiovascular system by regulating blood flow and blood pressure through Ca2+ dependent exocitosis of vasoactive compounds. Using the Ca2+ indicator Fluo-3 and the patch-clamp technique, we show that bovine adrenal medulla capillary endothelial cells (B AMCECs) respond to acetylcholine (ACh) with a cytosolic Ca2+ increase and depolarization of the membrane potential (20.3±0.9 mV; n=23). The increase in cytosolic Ca2+ induced by 10µM ACh was mimicked by the same concentration of nicotine but not by muscarine and was blocked by 100 µM of hexamethonium. On the other hand, the increase in cytosolic Ca2+ could be depressed by nifedipine (0.01 -100 µM) or withdrawal of extracellular Ca2+. Taken together, these results give evidence for functional nicotinic receptors (nAChRs) in capillary endothelial cells of the adrenal medulla. It suggests that nAChRs in B AMCECs may be involved in the regulation of the adrenal gland's microcirculation by depolarizing the membrane potential, leading to the opening of voltage-activated Ca2+ channels, influx of external Ca2+ and liberation of vasoactive compounds.