Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT) embryos
Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT) embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental pote...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad de Biología de Chile
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602013000400016 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT) embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively). No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (P<0.01) in the rate of blastocyst development, with the K-K/ FBS culture system yielding a higher rate of blastocysts (28%) compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively). Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA). Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique. |
---|