Integrated analyses of copy number variations and gene differential expression in lung squamous-cell carcinoma

BACKGROUND: Although numerous efforts have been made, the pathogenesis underlying lung squamous-cell carcinoma (SCC) remains unclear. This study aimed to identify the CNV-driven genes by an integrated analysis of both the gene differential expression and copy number variation (CNV). RESULTS: A highe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yang,Zhao, Zhuan,Bing, Yan,Ying, Jiang,Simin, Wang,Tao
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602015000100047
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:BACKGROUND: Although numerous efforts have been made, the pathogenesis underlying lung squamous-cell carcinoma (SCC) remains unclear. This study aimed to identify the CNV-driven genes by an integrated analysis of both the gene differential expression and copy number variation (CNV). RESULTS: A higher burden of the CNVs was found in 10-50 kb length. The 16 CNV-driven genes mainly located in chr 1 and chr 3 were enriched in immune response [e.g. complement factor H (CFH) and Fc fragment of IgG, low affinity Ilia, receptor (FCGR3A)], starch and sucrose metabolism [e.g. amylase alpha 2A (AMY2A)]. Furthermore, 38 TFs were screened for the 9 CNV-driven genes and then the regulatory network was constructed, in which the GATA-binding factor 1, 2, and 3 (GATA 1, GATA2, GATA3) jointly regulated the expression of TP63. CONCLUSIONS: The above CNV-driven genes might be potential contributors to the development of lung SCC.