Anti-inflammatory effects of Salvia plebeia R. Br extract in vitro and in ovalbumin-induced mouse model

BACKGROUND: Asthma is an increasing global health problem, and novel strategies to prevent or ameliorate the condition are needed. Here, the effects of 80 % ethanol extracts of Salvia plebeia R. Br. (SE) on an induced inflammatory response were investigated RESULTS: Salvia plebeia R. Br. inhibited p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hwan-Hee,Jang, Su-Yeon,Cho, Mi-Ju,Kim, Jung-Bong,Kim, Sung-Hyen,Lee, Mee-Young,Lee, Young-Min,Lee
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2016
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602016000100041
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:BACKGROUND: Asthma is an increasing global health problem, and novel strategies to prevent or ameliorate the condition are needed. Here, the effects of 80 % ethanol extracts of Salvia plebeia R. Br. (SE) on an induced inflammatory response were investigated RESULTS: Salvia plebeia R. Br. inhibited production of pro-inflammatory cytokines, such as TNF-α and IL-6, as well as nitric oxide (NO) in LPS-stimulated RAW 264.7 cells. NO and pro-inflammatory cytokine production was suppressed more effectively by SE of the aerial parts (SE-A) than of the roots (SE-R) of S. plebeia. In BEAS-2B cells, both SE-A and SE-R inhibited the increase in production of the inflammatory cytokines IL-6 and IL-8. We also investigated the antiasthmatic effects of SE in an ovalbumin (OVA)-induced BALB/c mouse model. SE-A treatment significantly reduced the number of airway eosinophils, IL-4 and IL-13 levels, mucus production, and inflammatory infiltration, as compared with the corresponding levels in the untreated, OVA-induced mice, and had similar effects to dexamethasone CONCLUSIONS: Salvia plebeia ethanol extract ameliorated the induced inflammatory response in RAW 264.7 and BEAS-2B cells, with more effective inhibition noted for SE-A than for SE-R. SE-A treatment was effective in improving the histopathological changes in the lungs of asthma model mice via modulation of eosinophils and Th2 cytokines. These results suggest that SE-A can be considered as a therapeutic agent that can potentially relieve asthma