Metabotropic glutamate receptor 5 may be involved in macrophage plasticity

Abstract Background Macrophages are a functionally heterogeneous cell population and depending on microenvironments they polarize in two main groups: M1 and M2. Glutamic acid and glutamate receptors may participate in the regulation of macrophage plasticity. To investigate the role of glutamatergi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shanshiashvili,Lali, Tsitsilashvili,Elene, Dabrundashvili,Nino, Kalandadze,Irine, Mikeladze,David
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602017000100203
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Background Macrophages are a functionally heterogeneous cell population and depending on microenvironments they polarize in two main groups: M1 and M2. Glutamic acid and glutamate receptors may participate in the regulation of macrophage plasticity. To investigate the role of glutamatergic systems in macrophages physiology, we performed the transfection of mGluR5 cDNAs into RAW-264.7 cells. Results Comparative analysis of modified (RAW-mGluR5 macrophages) and non-modified macrophages (RAW-macrophages) has shown that the RAW-mGluR5 macrophages absorbed more glutamate than control cells and the amount of intracellular glutamate correlated with the expression of excitatory amino acid transporters -2 (EAAT-2). Besides, our results have shown that RAW-mGluR5 macrophages expressed a higher level of peroxisome proliferator-activated receptor γ (PPAR-γ) and secreted more IL-10, high mobility group box 1 proteins (HMGB1) and Galectin-3 than control RAW-macrophages. Conclusions We propose that elevation of intracellular glutamate and expression of mGluR5 may initiate the metabolic rearrangement in macrophages that could contribute to the formation of an immunosuppressive phenotype.