The deubiquitinase USP38 affects cellular functions through interacting with LSD1

Abstract Background: Deubiquitination is a posttranslational protein modification prevalent in mammalian cells. Deubiquitinases regulate the functions of the target protein by removing its ubiquitin chain. In this study, the effects of the deubiquitinase USP38's functions on the LSD1 protein a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Liu,Wenbin, Zhang,Qi, Fang,Yuanyuan, Wang,Yanan
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602018000100243
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Background: Deubiquitination is a posttranslational protein modification prevalent in mammalian cells. Deubiquitinases regulate the functions of the target protein by removing its ubiquitin chain. In this study, the effects of the deubiquitinase USP38's functions on the LSD1 protein and on cell physiology were investigated. Materials and methods: Western blotting, real-time quantitative PCR, immunoprecipitation, denaturing immunoprecipitation and luciferase reporter assays were used to analyze the protein stability, protein interactions and changes in the ubiquitin chain. Cell proliferation assays, colony formation assays, drug treatments and western blotting were used to explore the functions of USP38 in cells. Results: The deubiquitinase USP38 stabilizes protein LSD1 in cells by binding LSD1 and cleaving its ubiquitin chain to prevent the degradation of LSD1 by the intracellular proteasome. USP38 enhances the ability of LSD1 to activate signaling pathways and hence promotes cellular abilities of proliferation and colony formation through interacting with LSD1. Furthermore, USP38 enhances the drug tolerance of human colon cancer cells. Conclusions: USP38 is an LSD1-specific deubiquitinase that affects cellular physiology through interacting with LSD1.