Protein expression profiles and clinicopathologic characteristics associate with gastric cancer survival
Abstract Background: Prognosis remains one of most crucial determinants of gastric cancer (GC) treatment, but current methods do not predict prognosis accurately. Identification of additional biomarkers is urgently required to identify patients at risk of poor prognoses. Methods: Tissue microarray...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad de Biología de Chile
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602019000100239 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-97602019000100239 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-976020190001002392019-10-10Protein expression profiles and clinicopathologic characteristics associate with gastric cancer survivalLi,WeiChen,YanSun,XuanYang,JupengZhang,David Y.Wang,DaguangSuo,Jian Gastric cancer Protein expression profiling Tissue microarray Immunohistochemistry Pathway Abstract Background: Prognosis remains one of most crucial determinants of gastric cancer (GC) treatment, but current methods do not predict prognosis accurately. Identification of additional biomarkers is urgently required to identify patients at risk of poor prognoses. Methods: Tissue microarrays were used to measure expression of nine GC-associated proteins in GC tissue and normal gastric tissue samples. Hierarchical cluster analysis of microarray data and feature selection for factors associated with survival were performed. Based on these data, prognostic scoring models were established to predict clinical outcomes. Finally, ingenuity pathway analysis (IPA) was used to identify a biological GC network. Results: Eight proteins were upregulated in GC tissues versus normal gastric tissues. Hierarchical cluster analysis and feature selection showed that overall survival was worse in cyclin dependent kinase (CDK)2, Akt1, X-linked inhibitor of apoptosis protein (XIAP), Notch4, and phosphorylated (p)-protein kinase C (PKC) α/β2 immunopositive patients than in patients that were immunonegative for these proteins. Risk score models based on these five proteins and clinicopathological characteristics were established to determine prognoses of GC patients. These proteins were found to be involved in cancer related-signaling pathways and upstream regulators were identified. Conclusion: This study identified proteins that can be used as clinical biomarkers and established a risk score model based on these proteins and clinicopathological characteristics to assess GC prognosis.info:eu-repo/semantics/openAccessSociedad de Biología de ChileBiological Research v.52 20192019-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602019000100239en10.1186/s40659-019-0249-0 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Gastric cancer Protein expression profiling Tissue microarray Immunohistochemistry Pathway |
spellingShingle |
Gastric cancer Protein expression profiling Tissue microarray Immunohistochemistry Pathway Li,Wei Chen,Yan Sun,Xuan Yang,Jupeng Zhang,David Y. Wang,Daguang Suo,Jian Protein expression profiles and clinicopathologic characteristics associate with gastric cancer survival |
description |
Abstract Background: Prognosis remains one of most crucial determinants of gastric cancer (GC) treatment, but current methods do not predict prognosis accurately. Identification of additional biomarkers is urgently required to identify patients at risk of poor prognoses. Methods: Tissue microarrays were used to measure expression of nine GC-associated proteins in GC tissue and normal gastric tissue samples. Hierarchical cluster analysis of microarray data and feature selection for factors associated with survival were performed. Based on these data, prognostic scoring models were established to predict clinical outcomes. Finally, ingenuity pathway analysis (IPA) was used to identify a biological GC network. Results: Eight proteins were upregulated in GC tissues versus normal gastric tissues. Hierarchical cluster analysis and feature selection showed that overall survival was worse in cyclin dependent kinase (CDK)2, Akt1, X-linked inhibitor of apoptosis protein (XIAP), Notch4, and phosphorylated (p)-protein kinase C (PKC) α/β2 immunopositive patients than in patients that were immunonegative for these proteins. Risk score models based on these five proteins and clinicopathological characteristics were established to determine prognoses of GC patients. These proteins were found to be involved in cancer related-signaling pathways and upstream regulators were identified. Conclusion: This study identified proteins that can be used as clinical biomarkers and established a risk score model based on these proteins and clinicopathological characteristics to assess GC prognosis. |
author |
Li,Wei Chen,Yan Sun,Xuan Yang,Jupeng Zhang,David Y. Wang,Daguang Suo,Jian |
author_facet |
Li,Wei Chen,Yan Sun,Xuan Yang,Jupeng Zhang,David Y. Wang,Daguang Suo,Jian |
author_sort |
Li,Wei |
title |
Protein expression profiles and clinicopathologic characteristics associate with gastric cancer survival |
title_short |
Protein expression profiles and clinicopathologic characteristics associate with gastric cancer survival |
title_full |
Protein expression profiles and clinicopathologic characteristics associate with gastric cancer survival |
title_fullStr |
Protein expression profiles and clinicopathologic characteristics associate with gastric cancer survival |
title_full_unstemmed |
Protein expression profiles and clinicopathologic characteristics associate with gastric cancer survival |
title_sort |
protein expression profiles and clinicopathologic characteristics associate with gastric cancer survival |
publisher |
Sociedad de Biología de Chile |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602019000100239 |
work_keys_str_mv |
AT liwei proteinexpressionprofilesandclinicopathologiccharacteristicsassociatewithgastriccancersurvival AT chenyan proteinexpressionprofilesandclinicopathologiccharacteristicsassociatewithgastriccancersurvival AT sunxuan proteinexpressionprofilesandclinicopathologiccharacteristicsassociatewithgastriccancersurvival AT yangjupeng proteinexpressionprofilesandclinicopathologiccharacteristicsassociatewithgastriccancersurvival AT zhangdavidy proteinexpressionprofilesandclinicopathologiccharacteristicsassociatewithgastriccancersurvival AT wangdaguang proteinexpressionprofilesandclinicopathologiccharacteristicsassociatewithgastriccancersurvival AT suojian proteinexpressionprofilesandclinicopathologiccharacteristicsassociatewithgastriccancersurvival |
_version_ |
1718441593990545408 |