Rhein alleviates renal interstitial fibrosis by inhibiting tubular cell apoptosis in rats

Abstract Background: Ureteral obstruction causes injury of the renal tissues and can irreversibly progress to renal fibrosis, with atrophy and apoptosis of tubular cells. The goal of the current study was to examine the effects of rhein on the apoptosis o renal tubular cells as well as renal fibros...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chen,Yakun, Mu,Lin, Xing,Lingling, Li,Shaomei, Fu,Shuxia
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602019000100246
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Background: Ureteral obstruction causes injury of the renal tissues and can irreversibly progress to renal fibrosis, with atrophy and apoptosis of tubular cells. The goal of the current study was to examine the effects of rhein on the apoptosis o renal tubular cells as well as renal fibrosis using a rodent model of unilateral ureteral obstruction (UUO). Methods: UUO was induced through ureteral ligation, then animals received treatments with rhein or vehicle. The control rats only received sham operation. The renal tissue was harvested 1 week after surgery for assessment of kidney fibrosis. Results: The expressions of collagen I and α-smooth muscle actin (α-SMA), as well as the severity of renal tubular apoptosis and fibrosis were time-dependently increased following UUO. Treatments with rhein partially inhibited such responses. Renal interstitial fibrosis was associated with STAT3 (signal transducer and activator of transcription 3) phosphorylation as well as altered expressions of Bax and Bcl2, both apoptosis-related proteins. Treatment with rhein also partly blocked these responses. Conclusion: These findings demonstrated that rhein mitigated apoptosis of renal tubular cell as well as renal fibrosis in a UUO rodent model. This curative effect is likely mediated via suppression of STAT3 phosphorylation.