Long non-coding RNA MALAT1 enhances the apoptosis of cardiomyocytes through autophagy inhibition by regulating TSC2-mTOR signaling

Abstract Background: Our previous study showed that knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) attenuated myocardial apoptosis in mouse acute myocardial infarction (AMI). This study aims to explore whether MALAT1 enhanced cardiomyocyte a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hu,Hao, Wu,Jiawei, Yu,Xiaofan, Zhou,Junling, Yu,Hua, Ma,Likun
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602019000100254
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-97602019000100254
record_format dspace
spelling oai:scielo:S0716-976020190001002542020-02-28Long non-coding RNA MALAT1 enhances the apoptosis of cardiomyocytes through autophagy inhibition by regulating TSC2-mTOR signalingHu,HaoWu,JiaweiYu,XiaofanZhou,JunlingYu,HuaMa,Likun MALAT1 Cardiomyocyte apoptosis Autophagy TSC2-mTOR EZH2 Abstract Background: Our previous study showed that knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) attenuated myocardial apoptosis in mouse acute myocardial infarction (AMI). This study aims to explore whether MALAT1 enhanced cardiomyocyte apoptosis via autophagy regulation and the underlying mechanisms of MALAT1 regulating autophagy. Methods: Cardiomyocytes were isolated from neonatal mice and then stimulated with hypoxia/reoxygenation (H/R) injury to mimic AMI. The autophagy level was assessed using GFP-LC3 immunofluorescence and western blot analysis of autophagy-related proteins. RNA pull-down and RNA immunoprecipitation (RIP) was performed to analyze the binding of MALAT1 and EZH2. Chromatin immunoprecipitation (ChIP) assay was performed to analyze the binding of TSC2 promoter and EZH2. The cell apoptosis was evaluated using TUNEL staining and western blot analysis of apoptosis-related proteins. Results: H/R injury increased MALAT1 expression in cardiomyocytes. Furthermore, MALAT1 overexpression inhibited, whereas MALAT1 knockdown enhanced the autophagy of cardiomyocytes. Moreover, MALAT1 overexpression recruited EZH2 to TSC2 promoter regions to elevate H3K27me3 and epigenetically inhibited TSC2 transcription. Importantly, TSC2 overexpression suppressed mTOR signaling and then activated the autophagy. Further results showed that MALAT1 inhibited proliferation and enhanced apoptosis of cardiomyocytes through inhibiting TSC2 and autophagy. Conclusion: These findings demonstrate that the increased MALAT1 expression induced by H/R injury enhances cardiomyocyte apoptosis through autophagy inhibition by regulating TSC2-mTOR signaling.info:eu-repo/semantics/openAccessSociedad de Biología de ChileBiological Research v.52 20192019-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602019000100254en10.1186/s40659-019-0265-0
institution Scielo Chile
collection Scielo Chile
language English
topic MALAT1
Cardiomyocyte apoptosis
Autophagy
TSC2-mTOR
EZH2
spellingShingle MALAT1
Cardiomyocyte apoptosis
Autophagy
TSC2-mTOR
EZH2
Hu,Hao
Wu,Jiawei
Yu,Xiaofan
Zhou,Junling
Yu,Hua
Ma,Likun
Long non-coding RNA MALAT1 enhances the apoptosis of cardiomyocytes through autophagy inhibition by regulating TSC2-mTOR signaling
description Abstract Background: Our previous study showed that knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) attenuated myocardial apoptosis in mouse acute myocardial infarction (AMI). This study aims to explore whether MALAT1 enhanced cardiomyocyte apoptosis via autophagy regulation and the underlying mechanisms of MALAT1 regulating autophagy. Methods: Cardiomyocytes were isolated from neonatal mice and then stimulated with hypoxia/reoxygenation (H/R) injury to mimic AMI. The autophagy level was assessed using GFP-LC3 immunofluorescence and western blot analysis of autophagy-related proteins. RNA pull-down and RNA immunoprecipitation (RIP) was performed to analyze the binding of MALAT1 and EZH2. Chromatin immunoprecipitation (ChIP) assay was performed to analyze the binding of TSC2 promoter and EZH2. The cell apoptosis was evaluated using TUNEL staining and western blot analysis of apoptosis-related proteins. Results: H/R injury increased MALAT1 expression in cardiomyocytes. Furthermore, MALAT1 overexpression inhibited, whereas MALAT1 knockdown enhanced the autophagy of cardiomyocytes. Moreover, MALAT1 overexpression recruited EZH2 to TSC2 promoter regions to elevate H3K27me3 and epigenetically inhibited TSC2 transcription. Importantly, TSC2 overexpression suppressed mTOR signaling and then activated the autophagy. Further results showed that MALAT1 inhibited proliferation and enhanced apoptosis of cardiomyocytes through inhibiting TSC2 and autophagy. Conclusion: These findings demonstrate that the increased MALAT1 expression induced by H/R injury enhances cardiomyocyte apoptosis through autophagy inhibition by regulating TSC2-mTOR signaling.
author Hu,Hao
Wu,Jiawei
Yu,Xiaofan
Zhou,Junling
Yu,Hua
Ma,Likun
author_facet Hu,Hao
Wu,Jiawei
Yu,Xiaofan
Zhou,Junling
Yu,Hua
Ma,Likun
author_sort Hu,Hao
title Long non-coding RNA MALAT1 enhances the apoptosis of cardiomyocytes through autophagy inhibition by regulating TSC2-mTOR signaling
title_short Long non-coding RNA MALAT1 enhances the apoptosis of cardiomyocytes through autophagy inhibition by regulating TSC2-mTOR signaling
title_full Long non-coding RNA MALAT1 enhances the apoptosis of cardiomyocytes through autophagy inhibition by regulating TSC2-mTOR signaling
title_fullStr Long non-coding RNA MALAT1 enhances the apoptosis of cardiomyocytes through autophagy inhibition by regulating TSC2-mTOR signaling
title_full_unstemmed Long non-coding RNA MALAT1 enhances the apoptosis of cardiomyocytes through autophagy inhibition by regulating TSC2-mTOR signaling
title_sort long non-coding rna malat1 enhances the apoptosis of cardiomyocytes through autophagy inhibition by regulating tsc2-mtor signaling
publisher Sociedad de Biología de Chile
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602019000100254
work_keys_str_mv AT huhao longnoncodingrnamalat1enhancestheapoptosisofcardiomyocytesthroughautophagyinhibitionbyregulatingtsc2mtorsignaling
AT wujiawei longnoncodingrnamalat1enhancestheapoptosisofcardiomyocytesthroughautophagyinhibitionbyregulatingtsc2mtorsignaling
AT yuxiaofan longnoncodingrnamalat1enhancestheapoptosisofcardiomyocytesthroughautophagyinhibitionbyregulatingtsc2mtorsignaling
AT zhoujunling longnoncodingrnamalat1enhancestheapoptosisofcardiomyocytesthroughautophagyinhibitionbyregulatingtsc2mtorsignaling
AT yuhua longnoncodingrnamalat1enhancestheapoptosisofcardiomyocytesthroughautophagyinhibitionbyregulatingtsc2mtorsignaling
AT malikun longnoncodingrnamalat1enhancestheapoptosisofcardiomyocytesthroughautophagyinhibitionbyregulatingtsc2mtorsignaling
_version_ 1718441597729767424