De novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of Gymnema sylvestre (Retz.) R.Br. ex Sm

Abstract Background: Gymnema sylvestre is a medicinal woody perennial vine known for its sweetening properties and antidiabetic therapeutic uses in the modern and traditional medicines. Its over-exploitation for the therapeutic uses and to meet the demand of pharmaceutical industry in raw materials...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Isah,Tasiu
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602019000100401
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-97602019000100401
record_format dspace
spelling oai:scielo:S0716-976020190001004012019-10-10De novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of Gymnema sylvestre (Retz.) R.Br. ex SmIsah,Tasiu Plant tissue culture Plant regeneration Plant growth regulators Phytochemicals Gymnema sylvestre Gymnemic acid Micro shoots Plantlets Shoot morphogenesis Abstract Background: Gymnema sylvestre is a medicinal woody perennial vine known for its sweetening properties and antidiabetic therapeutic uses in the modern and traditional medicines. Its over-exploitation for the therapeutic uses and to meet the demand of pharmaceutical industry in raw materials supply for the production of anti-diabetic drugs has led to considerable decline in its natural population. Results: An efficient system of shoot bud sprouting from nodal segment explants and indirect plant regeneration from apical meristem-induced callus cultures of G. sylvestre have been developed on Murashige and Skoog (MS) medium amended with concentrations of cytokinins. Of the three growth regulators tested, N6-benzylaminopurine (BAP) was the most efficient and 2.0 mg L−1 gave the best shoot formation efficiency. This was followed by thidiazuron (TDZ) and kinetin (Kin) but, most of the TDZ-induced micro shoots showed stunted growth. Multiple shoot formation was observed on medium amended with BAP or TDZ at higher concentrations. The produced micro shoots were rooted on half strength MS medium amended with auxins and rooted plantlets acclimatized with 87% survival of the regenerates. Conclusions: The developed regeneration system can be exploited for genetic transformation studies, particularly when aimed at producing its high yielding cell lines for the anti-diabetic phytochemicals. It also offers opportunities for exploring the expression of totipotency in the anti-diabetic perennial vine.info:eu-repo/semantics/openAccessSociedad de Biología de ChileBiological Research v.52 20192019-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602019000100401en10.1186/s40659-019-0211-1
institution Scielo Chile
collection Scielo Chile
language English
topic Plant tissue culture
Plant regeneration
Plant growth regulators
Phytochemicals
Gymnema sylvestre
Gymnemic acid
Micro shoots
Plantlets
Shoot morphogenesis
spellingShingle Plant tissue culture
Plant regeneration
Plant growth regulators
Phytochemicals
Gymnema sylvestre
Gymnemic acid
Micro shoots
Plantlets
Shoot morphogenesis
Isah,Tasiu
De novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of Gymnema sylvestre (Retz.) R.Br. ex Sm
description Abstract Background: Gymnema sylvestre is a medicinal woody perennial vine known for its sweetening properties and antidiabetic therapeutic uses in the modern and traditional medicines. Its over-exploitation for the therapeutic uses and to meet the demand of pharmaceutical industry in raw materials supply for the production of anti-diabetic drugs has led to considerable decline in its natural population. Results: An efficient system of shoot bud sprouting from nodal segment explants and indirect plant regeneration from apical meristem-induced callus cultures of G. sylvestre have been developed on Murashige and Skoog (MS) medium amended with concentrations of cytokinins. Of the three growth regulators tested, N6-benzylaminopurine (BAP) was the most efficient and 2.0 mg L−1 gave the best shoot formation efficiency. This was followed by thidiazuron (TDZ) and kinetin (Kin) but, most of the TDZ-induced micro shoots showed stunted growth. Multiple shoot formation was observed on medium amended with BAP or TDZ at higher concentrations. The produced micro shoots were rooted on half strength MS medium amended with auxins and rooted plantlets acclimatized with 87% survival of the regenerates. Conclusions: The developed regeneration system can be exploited for genetic transformation studies, particularly when aimed at producing its high yielding cell lines for the anti-diabetic phytochemicals. It also offers opportunities for exploring the expression of totipotency in the anti-diabetic perennial vine.
author Isah,Tasiu
author_facet Isah,Tasiu
author_sort Isah,Tasiu
title De novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of Gymnema sylvestre (Retz.) R.Br. ex Sm
title_short De novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of Gymnema sylvestre (Retz.) R.Br. ex Sm
title_full De novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of Gymnema sylvestre (Retz.) R.Br. ex Sm
title_fullStr De novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of Gymnema sylvestre (Retz.) R.Br. ex Sm
title_full_unstemmed De novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of Gymnema sylvestre (Retz.) R.Br. ex Sm
title_sort de novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of gymnema sylvestre (retz.) r.br. ex sm
publisher Sociedad de Biología de Chile
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602019000100401
work_keys_str_mv AT isahtasiu denovoinvitroshootmorphogenesisfromshoottipinducedcallusculturesofgymnemasylvestreretzrbrexsm
_version_ 1718441598691311616