CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis
Abstract Background: The intracellular concentration of heavy–metal cations, such as copper, nickel, and zinc is pivotal for the mycobacterial response to the hostile environment inside macrophages. To date, copper transport mediated by P–type ATPases across the mycobacterial pl...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad de Biología de Chile
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602020000100205 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-97602020000100205 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-976020200001002052020-06-25CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosisLeón-Torres,AndrésArango,EpifaniaCastillo,ElianaSoto,Carlos Y. Mycobacterium tuberculosis P–type ATPase CtpB Plasma membrane Copper transport Abstract Background: The intracellular concentration of heavy–metal cations, such as copper, nickel, and zinc is pivotal for the mycobacterial response to the hostile environment inside macrophages. To date, copper transport mediated by P–type ATPases across the mycobacterial plasma membrane has not been sufficiently explored. Results: In this work, the ATPase activity of the putative Mycobacterium tuberculosis P1B–type ATPase CtpB was associated with copper (I) transport from mycobacterial cells. Although CtpB heterologously expressed in M. smegmatis induced tolerance to toxic concentrations of Cu2+ and a metal preference for Cu+, the disruption of ctpB in M. tuberculosis cells did not promote impaired cell growth or heavy–metal accumulation in whole mutant cells in cultures under high doses of copper. In addition, the Cu+ ATPase activity of CtpB embedded in the plasma mem–brane showed features of high affinity/slow turnover ATPases, with enzymatic parameters KM 0.19 ±0.04 μM and Vmax 2.29 ±0.10 nmol/mg min. In contrast, the ctpB gene transcription was activated in cells under culture conditions that mimicked the hostile intraphagosomal environment, such as hypoxia, nitrosative and oxidative stress, but not under high doses of copper. Conclusions: The overall results suggest that M. tuberculosis CtpB is associated with Cu+ transport from mycobacterial cells possibly playing a role different from copper detoxification.info:eu-repo/semantics/openAccessSociedad de Biología de ChileBiological Research v.53 20202020-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602020000100205en10.1186/s40659-020-00274-7 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Mycobacterium tuberculosis P–type ATPase CtpB Plasma membrane Copper transport |
spellingShingle |
Mycobacterium tuberculosis P–type ATPase CtpB Plasma membrane Copper transport León-Torres,Andrés Arango,Epifania Castillo,Eliana Soto,Carlos Y. CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis |
description |
Abstract Background: The intracellular concentration of heavy–metal cations, such as copper, nickel, and zinc is pivotal for the mycobacterial response to the hostile environment inside macrophages. To date, copper transport mediated by P–type ATPases across the mycobacterial plasma membrane has not been sufficiently explored. Results: In this work, the ATPase activity of the putative Mycobacterium tuberculosis P1B–type ATPase CtpB was associated with copper (I) transport from mycobacterial cells. Although CtpB heterologously expressed in M. smegmatis induced tolerance to toxic concentrations of Cu2+ and a metal preference for Cu+, the disruption of ctpB in M. tuberculosis cells did not promote impaired cell growth or heavy–metal accumulation in whole mutant cells in cultures under high doses of copper. In addition, the Cu+ ATPase activity of CtpB embedded in the plasma mem–brane showed features of high affinity/slow turnover ATPases, with enzymatic parameters KM 0.19 ±0.04 μM and Vmax 2.29 ±0.10 nmol/mg min. In contrast, the ctpB gene transcription was activated in cells under culture conditions that mimicked the hostile intraphagosomal environment, such as hypoxia, nitrosative and oxidative stress, but not under high doses of copper. Conclusions: The overall results suggest that M. tuberculosis CtpB is associated with Cu+ transport from mycobacterial cells possibly playing a role different from copper detoxification. |
author |
León-Torres,Andrés Arango,Epifania Castillo,Eliana Soto,Carlos Y. |
author_facet |
León-Torres,Andrés Arango,Epifania Castillo,Eliana Soto,Carlos Y. |
author_sort |
León-Torres,Andrés |
title |
CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis |
title_short |
CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis |
title_full |
CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis |
title_fullStr |
CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis |
title_full_unstemmed |
CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis |
title_sort |
ctpb is a plasma membrane copper (i) transporting p-type atpase of mycobacterium tuberculosis |
publisher |
Sociedad de Biología de Chile |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602020000100205 |
work_keys_str_mv |
AT leontorresandres ctpbisaplasmamembranecopperitransportingptypeatpaseofmycobacteriumtuberculosis AT arangoepifania ctpbisaplasmamembranecopperitransportingptypeatpaseofmycobacteriumtuberculosis AT castilloeliana ctpbisaplasmamembranecopperitransportingptypeatpaseofmycobacteriumtuberculosis AT sotocarlosy ctpbisaplasmamembranecopperitransportingptypeatpaseofmycobacteriumtuberculosis |
_version_ |
1718441600390004736 |