Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2

Abstract Background: Recently, there is increasing awareness focused on the identification of naturally occurring anticancer agents derived from natural products. Manuka honey (MH) has been recognized for its biological properties as antimicrobial, antioxidant, and anticancer properties. However, i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Al Refaey,Heba R., Newairy,Al-Sayeda A., Wahby,Mayssaa M., Albanese,Chris, Elkewedi,Mohamed, Choudhry,Muhammad Umer, Sultan,Ahmed S.
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602021000100216
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-97602021000100216
record_format dspace
spelling oai:scielo:S0716-976020210001002162021-06-30Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2Al Refaey,Heba R.Newairy,Al-Sayeda A.Wahby,Mayssaa M.Albanese,ChrisElkewedi,MohamedChoudhry,Muhammad UmerSultan,Ahmed S. Manuka honey Doxorubicin Hepatocellular carcinoma cells Apoptosis Induction Abstract Background: Recently, there is increasing awareness focused on the identification of naturally occurring anticancer agents derived from natural products. Manuka honey (MH) has been recognized for its biological properties as antimicrobial, antioxidant, and anticancer properties. However, its antiproliferative mechanism in hepatocellular carcinoma is not investigated. The current study focused mainly on investigating the molecular mechanism and synergistic effect of anticancer properties of MH on Doxorubicin (DOX)-mediated apoptotic cell death, using two different p53 statuses (HepG2 and Hep3B) and one non-tumorigenic immortalized liver cell line. Results: MH treatment showed a proliferative inhibitory effect on tested cells in a dose-dependent manner with IC50 concentration of (6.92 ± 0.005%) and (18.62 ± 0.07%) for HepG2 and Hep3B cells, respectively, and induced dramatic morphological changes of Hep-G2 cells, which considered as characteristics feature of apoptosis induction after 48 h of treatment. Our results showed that MH or combined treatments induced higher cytotoxicity in p53-wild type, HepG2, than in p53-null, Hep3B, cells. Cytotoxicity was not observed in normal liver cells. Furthermore, the synergistic effect of MH and Dox on apoptosis was evidenced by increased annexin-V-positive cells and Sub-G1 cells in both tested cell lines with a significant increase in the percentage of Hep-G2 cells at late apoptosis as confirmed by the flow cytometric analysis. Consistently, the proteolytic activities of caspase-3 and the degradation of poly (ADP-ribose) polymerase were also higher in the combined treatment which in turn accompanied by significant inhibitory effects of pERK1/2, mTOR, S6K, oncogenic β-catenin, and cyclin D1 after 48 h. In contrast, the MH or combined treatment-induced apoptosis was accompanied by significantly upregulated expression of proapoptotic Bax protein and down-regulated expression of anti-apoptotic Bcl-2 protein after 48 h. Conclusions: Our data showed a synergistic inhibitory effect of MH on DOX-mediated apoptotic cell death in HCC cells. To our knowledge, the present study provides the first report on the anticancer activity of MH and its combined treatment with DOX on HCC cell lines, introducing MH as a promising natural and nontoxic anticancer compound.info:eu-repo/semantics/openAccessSociedad de Biología de ChileBiological Research v.54 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602021000100216en10.1186/s40659-021-00339-1
institution Scielo Chile
collection Scielo Chile
language English
topic Manuka honey
Doxorubicin
Hepatocellular carcinoma cells
Apoptosis Induction
spellingShingle Manuka honey
Doxorubicin
Hepatocellular carcinoma cells
Apoptosis Induction
Al Refaey,Heba R.
Newairy,Al-Sayeda A.
Wahby,Mayssaa M.
Albanese,Chris
Elkewedi,Mohamed
Choudhry,Muhammad Umer
Sultan,Ahmed S.
Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2
description Abstract Background: Recently, there is increasing awareness focused on the identification of naturally occurring anticancer agents derived from natural products. Manuka honey (MH) has been recognized for its biological properties as antimicrobial, antioxidant, and anticancer properties. However, its antiproliferative mechanism in hepatocellular carcinoma is not investigated. The current study focused mainly on investigating the molecular mechanism and synergistic effect of anticancer properties of MH on Doxorubicin (DOX)-mediated apoptotic cell death, using two different p53 statuses (HepG2 and Hep3B) and one non-tumorigenic immortalized liver cell line. Results: MH treatment showed a proliferative inhibitory effect on tested cells in a dose-dependent manner with IC50 concentration of (6.92 ± 0.005%) and (18.62 ± 0.07%) for HepG2 and Hep3B cells, respectively, and induced dramatic morphological changes of Hep-G2 cells, which considered as characteristics feature of apoptosis induction after 48 h of treatment. Our results showed that MH or combined treatments induced higher cytotoxicity in p53-wild type, HepG2, than in p53-null, Hep3B, cells. Cytotoxicity was not observed in normal liver cells. Furthermore, the synergistic effect of MH and Dox on apoptosis was evidenced by increased annexin-V-positive cells and Sub-G1 cells in both tested cell lines with a significant increase in the percentage of Hep-G2 cells at late apoptosis as confirmed by the flow cytometric analysis. Consistently, the proteolytic activities of caspase-3 and the degradation of poly (ADP-ribose) polymerase were also higher in the combined treatment which in turn accompanied by significant inhibitory effects of pERK1/2, mTOR, S6K, oncogenic β-catenin, and cyclin D1 after 48 h. In contrast, the MH or combined treatment-induced apoptosis was accompanied by significantly upregulated expression of proapoptotic Bax protein and down-regulated expression of anti-apoptotic Bcl-2 protein after 48 h. Conclusions: Our data showed a synergistic inhibitory effect of MH on DOX-mediated apoptotic cell death in HCC cells. To our knowledge, the present study provides the first report on the anticancer activity of MH and its combined treatment with DOX on HCC cell lines, introducing MH as a promising natural and nontoxic anticancer compound.
author Al Refaey,Heba R.
Newairy,Al-Sayeda A.
Wahby,Mayssaa M.
Albanese,Chris
Elkewedi,Mohamed
Choudhry,Muhammad Umer
Sultan,Ahmed S.
author_facet Al Refaey,Heba R.
Newairy,Al-Sayeda A.
Wahby,Mayssaa M.
Albanese,Chris
Elkewedi,Mohamed
Choudhry,Muhammad Umer
Sultan,Ahmed S.
author_sort Al Refaey,Heba R.
title Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2
title_short Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2
title_full Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2
title_fullStr Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2
title_full_unstemmed Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2
title_sort manuka honey enhanced sensitivity of hepg2, hepatocellular carcinoma cells, for doxorubicin and induced apoptosis through inhibition of wnt/β-catenin and erk1/2
publisher Sociedad de Biología de Chile
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602021000100216
work_keys_str_mv AT alrefaeyhebar manukahoneyenhancedsensitivityofhepg2hepatocellularcarcinomacellsfordoxorubicinandinducedapoptosisthroughinhibitionofwnt946cateninanderk12
AT newairyalsayedaa manukahoneyenhancedsensitivityofhepg2hepatocellularcarcinomacellsfordoxorubicinandinducedapoptosisthroughinhibitionofwnt946cateninanderk12
AT wahbymayssaam manukahoneyenhancedsensitivityofhepg2hepatocellularcarcinomacellsfordoxorubicinandinducedapoptosisthroughinhibitionofwnt946cateninanderk12
AT albanesechris manukahoneyenhancedsensitivityofhepg2hepatocellularcarcinomacellsfordoxorubicinandinducedapoptosisthroughinhibitionofwnt946cateninanderk12
AT elkewedimohamed manukahoneyenhancedsensitivityofhepg2hepatocellularcarcinomacellsfordoxorubicinandinducedapoptosisthroughinhibitionofwnt946cateninanderk12
AT choudhrymuhammadumer manukahoneyenhancedsensitivityofhepg2hepatocellularcarcinomacellsfordoxorubicinandinducedapoptosisthroughinhibitionofwnt946cateninanderk12
AT sultanahmeds manukahoneyenhancedsensitivityofhepg2hepatocellularcarcinomacellsfordoxorubicinandinducedapoptosisthroughinhibitionofwnt946cateninanderk12
_version_ 1718441617099063296