Inhibition of attachment of some fouling diatoms and settlement of Ulva lactuca zoospores by film-forming bacterium and their extracellular products isolated from biofouled substrata in Northern Chile

The biofouling of surfaces submerged in the marine environment includes primary colonization of the substrate by microorganisms including bacteria, microalgae, and microscopic reproductive propagules of macroorganisms such as algal zoospores. The present study reports the evaluation of the inhibitor...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Silva-Aciares,Fernando, Riquelme,Carlos
Lenguaje:English
Publicado: Pontificia Universidad Católica de Valparaíso 2008
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582008000100006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The biofouling of surfaces submerged in the marine environment includes primary colonization of the substrate by microorganisms including bacteria, microalgae, and microscopic reproductive propagules of macroorganisms such as algal zoospores. The present study reports the evaluation of the inhibitory potential of biofilms and extracellular products (EP) of the indigenous bacterium Alteromonas sp strain Ni1-LEM on the settlement of marine biofouling such as: (i) eight marine benthic diatoms and (ii) zoospores of the alga Ulva lactuca, as well as the germination of these zoospores and was compared with reference strains with proven antifouling properties, Halomonas marina (ATCC 25374) and Pseudoalteromonas tunicata. Highest antifouling activity was found for the indigenous strain. In attempts to better define the chemical nature of the antifouling substance in the EP of the Alteromonas sp strain Ni1-LEM, the culture filtrates were tested for activity after heat treatment, enzymatic treatments, dialysis through semipermeable membranes, and separation into polar (aqueous) and non-polar (organic) fractions. The results suggested that the antifouling substance in the culture filtrates to be protein or peptide in nature, thermostable, hydrophilic, and equal to or greater than 3500 daltons in molecular size. Antifouling substances from bacteria may lead to the development of novel antifouling agents in the future.