Cold resistance in plants: A mystery unresolved

Herbaceous temperate plants are capable of developing freezing tolerance when they are exposed to low nonfreezing temperatures. Acquired freezing tolerance involves extensive reprogramming of gene expression and metabolism. Recent full-genome transcript profiling studies, in combination with mutatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jan,Nishawar, ul-Hussain,Mahboob, Andrabi,Khurshid I.
Lenguaje:English
Publicado: Pontificia Universidad Católica de Valparaíso 2009
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582009000300014
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0717-34582009000300014
record_format dspace
spelling oai:scielo:S0717-345820090003000142010-04-01Cold resistance in plants: A mystery unresolvedJan,Nishawarul-Hussain,MahboobAndrabi,Khurshid I. cold acclimation cold resistance CORs (cold regulated) Herbaceous temperate plants are capable of developing freezing tolerance when they are exposed to low nonfreezing temperatures. Acquired freezing tolerance involves extensive reprogramming of gene expression and metabolism. Recent full-genome transcript profiling studies, in combination with mutational and transgenic plant analyses, have provided a snapshot of the complex transcriptional network that operates under cold stress. The changes in expression of hundreds of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Genetic analysis has revealed important roles for cellular metabolic signals, and for RNA splicing, export and secondary structure unwinding, in regulating cold-responsive gene expression and chilling and freezing tolerance. These results along with many of the others summarized here further our understanding of the basic mechanisms that plants have evolved to survive freezing temperatures. In addition, the findings have potential practical applications, as freezing temperatures are a major factor limiting the geographical locations suitable for growing crop and horticultural plants and periodically account for significant losses in plant productivity. Although, great progress has been made in the field but lacunae still remain since it appears that the cold resistance is more complex than perceived and involves more than one pathway.info:eu-repo/semantics/openAccessPontificia Universidad Católica de ValparaísoElectronic Journal of Biotechnology v.12 n.3 20092009-07-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582009000300014en10.4067/S0717-34582009000300014
institution Scielo Chile
collection Scielo Chile
language English
topic cold acclimation
cold resistance
CORs (cold regulated)
spellingShingle cold acclimation
cold resistance
CORs (cold regulated)
Jan,Nishawar
ul-Hussain,Mahboob
Andrabi,Khurshid I.
Cold resistance in plants: A mystery unresolved
description Herbaceous temperate plants are capable of developing freezing tolerance when they are exposed to low nonfreezing temperatures. Acquired freezing tolerance involves extensive reprogramming of gene expression and metabolism. Recent full-genome transcript profiling studies, in combination with mutational and transgenic plant analyses, have provided a snapshot of the complex transcriptional network that operates under cold stress. The changes in expression of hundreds of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Genetic analysis has revealed important roles for cellular metabolic signals, and for RNA splicing, export and secondary structure unwinding, in regulating cold-responsive gene expression and chilling and freezing tolerance. These results along with many of the others summarized here further our understanding of the basic mechanisms that plants have evolved to survive freezing temperatures. In addition, the findings have potential practical applications, as freezing temperatures are a major factor limiting the geographical locations suitable for growing crop and horticultural plants and periodically account for significant losses in plant productivity. Although, great progress has been made in the field but lacunae still remain since it appears that the cold resistance is more complex than perceived and involves more than one pathway.
author Jan,Nishawar
ul-Hussain,Mahboob
Andrabi,Khurshid I.
author_facet Jan,Nishawar
ul-Hussain,Mahboob
Andrabi,Khurshid I.
author_sort Jan,Nishawar
title Cold resistance in plants: A mystery unresolved
title_short Cold resistance in plants: A mystery unresolved
title_full Cold resistance in plants: A mystery unresolved
title_fullStr Cold resistance in plants: A mystery unresolved
title_full_unstemmed Cold resistance in plants: A mystery unresolved
title_sort cold resistance in plants: a mystery unresolved
publisher Pontificia Universidad Católica de Valparaíso
publishDate 2009
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582009000300014
work_keys_str_mv AT jannishawar coldresistanceinplantsamysteryunresolved
AT ulhussainmahboob coldresistanceinplantsamysteryunresolved
AT andrabikhurshidi coldresistanceinplantsamysteryunresolved
_version_ 1718441803023122432