Normalized embryoid cDNA library of oil palm (Elaeis guineensis)

A normalized embryoid cDNA library (EON) was constructed based on reassociation kinetics reaction. Results from dot blot hybridization and sequencing of EON cDNA clones clearly indicated that the normalization process reduced the frequency of high abundance transcripts and increased the frequency of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chan,Pek-Lan, Ma,Lay-Sun, Low,Eng-Ti L, Shariff,Elyana M, Ooi,Leslie Cheng-Li, Cheah,Suan-Choo, Singh,Rajinder
Lenguaje:English
Publicado: Pontificia Universidad Católica de Valparaíso 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582010000100010
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A normalized embryoid cDNA library (EON) was constructed based on reassociation kinetics reaction. Results from dot blot hybridization and sequencing of EON cDNA clones clearly indicated that the normalization process reduced the frequency of high abundance transcripts and increased the frequency of low abundance gene transcripts. A total of 553 non-redundant expressed sequence tags (ESTs) were identified, 325 of these were not observed in the standard oil palm cDNA libraries sequenced previously. A total of 10 EON cDNA clones were chosen for expression profiling across samples from different stages of the tissue culture process. Two of the genes exhibited promising expression patterns for predicting the embryogenic potential in callus. Some of these genes were also differentially expressed in the various tissues of oil palm. This study showed that normalization of the existing embryoid library improved the chances of identifying transcripts not captured in the standard libraries, some of which could be associated with embryogenesis. This collection of ESTs is particularly well suited for use as candidate genes for development of an oil palm DNA chip, which can be used to obtain a more comprehensive view of the molecular mechanism associated with oil palm tissue culture.