EST sequencing and SSR marker development from cultivated peanut (Arachis hypogaea L.)

Making use of the gene resources of wild type peanuts is a way to increase the genetic diversity of the cultivars. Marker assisted selection (MAS) could shorten the process of inter-specific hybridization and provide a possible way to remove the undesirable traits. However, the limited number of mol...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Song,Guo Qi, Li,Meng Jun, Xiao,Han, Wang,Xing Jun, Tang,Rong Hua, Xia,Han, Zhao,Chuan Zhi, Bi,Yu Ping
Lenguaje:English
Publicado: Pontificia Universidad Católica de Valparaíso 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582010000300007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Making use of the gene resources of wild type peanuts is a way to increase the genetic diversity of the cultivars. Marker assisted selection (MAS) could shorten the process of inter-specific hybridization and provide a possible way to remove the undesirable traits. However, the limited number of molecular markers available in peanut retarded its MAS process. We started a peanut ESTs (Expressed Sequence Tags) project aiming at cloning genes with agronomic importance and developing molecular markers. In this study we found 610 ESTs that contained one or more SSRs from 12,000 peanut ESTs. The most abundant SSRs in peanut are trinucleotides (66.3%) SSRs and followed by dinucleotide (28.8%) SSRs. AG/TC (10.7%) repeat was the most abundant and followed by CT/GA (9.0%), CTT/GAA (7.4%), and AAG/TTC (7.3%) repeats. Ninety-four SSR containing ESTs were randomly selected for primer design and synthesis, of which 33 pairs could generate good amplification and were used for polymorphism assessment. Results showed that polymorphism was very low in cultivars, while high level of polymorphism was revealed in wild type peanuts.