Characterization of the genetic structure of mango ginger (Curcuma amada Roxb.) from Myanmar in farm and genebank collection by the neutral and functional genomic markers

A preliminary characterization was undertaken to describe genetic structure of mango ginger (Curcuma amada) acquired from farmers and ex situ genebank in Myanmar using neutral (rice SSR based RAPDs) and functional genomic (P450 based analog) markers. The high polymorphism (> 91%) depicted has dis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jatoi,Shakeel Ahmad, Kikuchi,Akira, Ahmad,Dawood, Watanabe,Kazuo N
Lenguaje:English
Publicado: Pontificia Universidad Católica de Valparaíso 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582010000600004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A preliminary characterization was undertaken to describe genetic structure of mango ginger (Curcuma amada) acquired from farmers and ex situ genebank in Myanmar using neutral (rice SSR based RAPDs) and functional genomic (P450 based analog) markers. The high polymorphism (> 91%) depicted has displayed existence of genetic variability in the germplasm investigated. Large number of source-specific alleles (neutral-markers = 78, functional-markers = 63) was amplified which revealed that neutral regions of the mango ginger were more variable compared with the functional regions. The major fraction of the molecular variance (neutral-markers = 85%, functional-markers = 93%) was explained within germplasm acquisition sources and this tendency was also supported by the estimate of gene diversity. The genebank accessions have shown comparatively more genetic variability than farmers? accessions. The variability observed in mango ginger may possibly be associated with the long history of its cultivation under diverse ecological conditions. The two marker systems elucidated their high resolving power which detected variability even in fewer genotypes assayed. As the target sites of these markers are different, therefore, the variability detected is believed to cover diverse part of the genome together with neutral and functional regions. We found the concurrent use of the different types of molecular markers valuable to comprehend a dependable variability pattern in the germplasm assayed.