Biosorption kinetics of a direct azo dye Sirius Blue K-CFN by Trametes versicolor

In this study, lyophilized Trametes versicolor biomass is used as a sorbent for biosorption of a textile dye, Sirius Blue K-CFN, from an aqueous solution. The batch sorption was studied with respect to dye concentration, adsorbent dose and equilibrium time. The effect of pH and temperature on dye up...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Erden,Emre, Kaymaz,Yasin, Pazarlioglu,Nurdan Kasikara
Lenguaje:English
Publicado: Pontificia Universidad Católica de Valparaíso 2011
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582011000200003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this study, lyophilized Trametes versicolor biomass is used as a sorbent for biosorption of a textile dye, Sirius Blue K-CFN, from an aqueous solution. The batch sorption was studied with respect to dye concentration, adsorbent dose and equilibrium time. The effect of pH and temperature on dye uptake was also investigated and kinetic parameters were determined. Optimal initial pH (3.0), equilibrium time (2 hrs), initial dye concentration ( 100 mg l-1) and biomass concentration (1.2 mg l-1) were determined at 26�C. The maximum biosorption capacity (q max) of Sirius Blue K-CFN dye on lyophilized T. versicolor biomass is 62.62 mg/g. The kinetic and isotherm studies indicated that the biosorption process obeys to a pseudo-second order model and Langmuir isotherm model. In addition, the biosorption capacities of fungal biomass compared to other well known adsorbents such as activated carbon and Amberlite, fungal biomass biosorptions capacities were found to be more efficient.