Prediction of xylanase optimal temperature by support vector regression
Background: Support vector machine (SVM), a novel powerful machine learning technology, was used to develop the non-linear quantitative structure-property relationship (QSPR) model of the G/11 xylanase based on the amino acid composition. The uniform design (UD) method was applied to optimize the ru...
Guardado en:
Autores principales: | Zhang,Guangya, Ge,Huihua |
---|---|
Lenguaje: | English |
Publicado: |
Pontificia Universidad Católica de Valparaíso
2012
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582012000100007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Statistical optimization of thermo-alkali stable xylanase production from Bacillus tequilensis strain ARMATI
por: Khusro,Ameer, et al.
Publicado: (2016) -
SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS
por: YU,XINLIANG, et al.
Publicado: (2011) -
Structural Damage Detection Using Supervised Nonlinear Support Vector Machine
por: Kian K. Sepahvand
Publicado: (2021) -
Design and analysis of quantum powered support vector machines for malignant breast cancer diagnosis
por: Vashisth Shubham, et al.
Publicado: (2021) -
Comparative study for the kinetics of extracellular xylanases from Trichoderma harzianum and Chaetomium thermophilum
por: Ahmed,Sibtain, et al.
Publicado: (2012)