Efficiency of RAPD, ISSR, AFLP and ISTR markers for the detection of polymorphisms and genetic relationships in camote de cerro (Dioscorea spp.)

Background At present, species known as camote de cerro (Dioscorea spp.) are found only in the wilderness in Mexico, but their populations are extremely depleted because they are indiscriminately collected, it is urgent to evaluate the conservation status of these plants in order to design conservat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Velasco-Ramírez,Ana Paulina, Torres-Morán,Martha Isabel, Molina-Moret,Sandy, Sánchez-González,José de Jesús, Santacruz-Ruvalcaba,Fernando
Lenguaje:English
Publicado: Pontificia Universidad Católica de Valparaíso 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582014000200002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Background At present, species known as camote de cerro (Dioscorea spp.) are found only in the wilderness in Mexico, but their populations are extremely depleted because they are indiscriminately collected, it is urgent to evaluate the conservation status of these plants in order to design conservation genetics programs. In this study, genetic diversity parameters along with cluster analysis based on Jaccard's coefficient were estimated with the objective to assess the efficiency of Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeat (ISSR), Amplified Fragment Length Polymorphism (AFLP) and Inverse Sequence Tagged Repeat (ISTR) molecular DNA markers in the Dioscorea genus. Results The polymorphic information contents were quite similar for all markers (≈0.48). Genetic variation of Dioscorea spp., in terms of average heterozygosity was lower with ISTR (0.36), and higher when other markers were used (RAPD = 0.43; ISSR = 0.45 and AFLP = 0.47). Conclusion This indicates an important level of genetic differences despite the fact that the plant is asexually propagated. Based on the diversity statistics, any marker tested in present work can be recommended for use in large-scale genetic studies of populations. However, the low correlations among different molecular marker systems show the importance of the complementarity of the information that is generated by different markers for genetic studies involving estimation of polymorphism and relationships.