One-step, codominant detection of imidazolinone resistance mutations in weedy rice (Oryza sativa L.)

Background Weedy rice (Oryza sativa L.) is a noxious form of cultivated rice (O. sativa L.) associated with intensive rice production and dry seeding. A cost-efficient strategy to control this weed is the Clearfield rice production system, which combines imidazolinone herbicides with mutant imidazol...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rosas,Juan E, Bonnecarrère,Victoria, Pérez de Vida,Fernando
Lenguaje:English
Publicado: Pontificia Universidad Católica de Valparaíso 2014
Materias:
SNP
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582014000200007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0717-34582014000200007
record_format dspace
spelling oai:scielo:S0717-345820140002000072014-09-02One-step, codominant detection of imidazolinone resistance mutations in weedy rice (Oryza sativa L.)Rosas,Juan EBonnecarrère,VictoriaPérez de Vida,Fernando Clearfield rice DNA-based resistance diagnosis Herbicide resistance KASP Red rice SNP Background Weedy rice (Oryza sativa L.) is a noxious form of cultivated rice (O. sativa L.) associated with intensive rice production and dry seeding. A cost-efficient strategy to control this weed is the Clearfield rice production system, which combines imidazolinone herbicides with mutant imidazolinone-resistant rice varieties. However, imidazolinone resistance mutations can be introgressed in weedy rice populations by natural outcrossing, reducing the life span of the Clearfield technology. Timely and accurate detection of imidazolinone resistance mutations in weedy rice may contribute to avoiding the multiplication and dispersion of resistant weeds and to protect the Clearfield system. Thus, highly sensitive and specific methods with high throughput and low cost are needed. KBioscience's Allele Specific PCR (KASP) is a codominant, competitive allele-specific PCR-based genotyping method. KASP enables both alleles to be detected in a single reaction in a closed-tube format. The aim of this work is to assess the suitability and validity of the KASP method for detection in weedy rice of the three imidazolinone resistance mutations reported to date in rice. Results Validation was carried out by determining the analytical performance of the new method and comparing it with conventional allele-specific PCR, when genotyping sets of cultivated and weedy rice samples. The conventional technique had a specificity of 0.97 and a sensibility of 0.95, whereas for the KASP method, both parameters were 1.00. Conclusions The new method has equal accuracy while being more informative and saving time and resources compared with conventional methods, which make it suitable for monitoring imidazolinone-resistant weedy rice in Clearfield rice fields.info:eu-repo/semantics/openAccessPontificia Universidad Católica de ValparaísoElectronic Journal of Biotechnology v.17 n.2 20142014-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582014000200007en10.1016/j.ejbt.2014.02.003
institution Scielo Chile
collection Scielo Chile
language English
topic Clearfield rice
DNA-based resistance diagnosis
Herbicide resistance
KASP
Red rice
SNP
spellingShingle Clearfield rice
DNA-based resistance diagnosis
Herbicide resistance
KASP
Red rice
SNP
Rosas,Juan E
Bonnecarrère,Victoria
Pérez de Vida,Fernando
One-step, codominant detection of imidazolinone resistance mutations in weedy rice (Oryza sativa L.)
description Background Weedy rice (Oryza sativa L.) is a noxious form of cultivated rice (O. sativa L.) associated with intensive rice production and dry seeding. A cost-efficient strategy to control this weed is the Clearfield rice production system, which combines imidazolinone herbicides with mutant imidazolinone-resistant rice varieties. However, imidazolinone resistance mutations can be introgressed in weedy rice populations by natural outcrossing, reducing the life span of the Clearfield technology. Timely and accurate detection of imidazolinone resistance mutations in weedy rice may contribute to avoiding the multiplication and dispersion of resistant weeds and to protect the Clearfield system. Thus, highly sensitive and specific methods with high throughput and low cost are needed. KBioscience's Allele Specific PCR (KASP) is a codominant, competitive allele-specific PCR-based genotyping method. KASP enables both alleles to be detected in a single reaction in a closed-tube format. The aim of this work is to assess the suitability and validity of the KASP method for detection in weedy rice of the three imidazolinone resistance mutations reported to date in rice. Results Validation was carried out by determining the analytical performance of the new method and comparing it with conventional allele-specific PCR, when genotyping sets of cultivated and weedy rice samples. The conventional technique had a specificity of 0.97 and a sensibility of 0.95, whereas for the KASP method, both parameters were 1.00. Conclusions The new method has equal accuracy while being more informative and saving time and resources compared with conventional methods, which make it suitable for monitoring imidazolinone-resistant weedy rice in Clearfield rice fields.
author Rosas,Juan E
Bonnecarrère,Victoria
Pérez de Vida,Fernando
author_facet Rosas,Juan E
Bonnecarrère,Victoria
Pérez de Vida,Fernando
author_sort Rosas,Juan E
title One-step, codominant detection of imidazolinone resistance mutations in weedy rice (Oryza sativa L.)
title_short One-step, codominant detection of imidazolinone resistance mutations in weedy rice (Oryza sativa L.)
title_full One-step, codominant detection of imidazolinone resistance mutations in weedy rice (Oryza sativa L.)
title_fullStr One-step, codominant detection of imidazolinone resistance mutations in weedy rice (Oryza sativa L.)
title_full_unstemmed One-step, codominant detection of imidazolinone resistance mutations in weedy rice (Oryza sativa L.)
title_sort one-step, codominant detection of imidazolinone resistance mutations in weedy rice (oryza sativa l.)
publisher Pontificia Universidad Católica de Valparaíso
publishDate 2014
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582014000200007
work_keys_str_mv AT rosasjuane onestepcodominantdetectionofimidazolinoneresistancemutationsinweedyriceoryzasatival
AT bonnecarrerevictoria onestepcodominantdetectionofimidazolinoneresistancemutationsinweedyriceoryzasatival
AT perezdevidafernando onestepcodominantdetectionofimidazolinoneresistancemutationsinweedyriceoryzasatival
_version_ 1718441890066464768