Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast

Background The high capacity of chloroplast genome response to integrate and express transgenes at high levels makes this technology a good option to produce proteins of interest. This report presents the stable expression of Pectin lyase (PelA gene) and the first stable expression of manganese pero...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Espinoza-Sánchez,Edward Alexander, Álvarez-Hernández,Marianela Hazel, Torres-Castillo,Jorge Ariel, Rascón-Cruz,Quintín, Gutiérrez-Díez,Adriana, Zavala-García,Francisco, Sinagawa-García,Sugey Ramona
Lenguaje:English
Publicado: Pontificia Universidad Católica de Valparaíso 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582015000300004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0717-34582015000300004
record_format dspace
spelling oai:scielo:S0717-345820150003000042015-06-26Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplastEspinoza-Sánchez,Edward AlexanderÁlvarez-Hernández,Marianela HazelTorres-Castillo,Jorge ArielRascón-Cruz,QuintínGutiérrez-Díez,AdrianaZavala-García,FranciscoSinagawa-García,Sugey Ramona Cell wall Chloroplast genetic transformation Hydrolytic enzyme Nicotiana tabacum Background The high capacity of chloroplast genome response to integrate and express transgenes at high levels makes this technology a good option to produce proteins of interest. This report presents the stable expression of Pectin lyase (PelA gene) and the first stable expression of manganese peroxidase (MnP-2 gene) from the chloroplast genome. Results pES4 and pES5 vectors were derived from pPV111A plasmid and contain the PelA and MnP-2 synthetic genes, respectively. Both genes are flanked by a synthetic rrn16S promoter and the 3'UTR from rbcL gene. Efficient gene integration into both inverted repeats of the intergenic region between rrn16S and 3'rps'12 was confirmed by Southern blot. Stable processing and expression of the RNA were confirmed by Northern blot analysis. Enzymatic activity was evaluated to detect expression and functionality of both enzymes. In general, mature plants showed more activity than young transplastomic plants. Compared to wild type plants, transplastomic events expressing pectin lyase exhibited enzymatic activity above 58.5% of total soluble protein at neutral pH and 60°C. In contrast, MnP-2 showed high activity at pH 6 with optimum temperature at 65°C. Neither transplastomic plant exhibited an abnormal phenotype. Conclusion This study demonstrated that hydrolytic genes PelA and MnP-2 could be integrated and expressed correctly from the chloroplast genome of tobacco plants. A whole plant, having ~ 470 g of biomass could feasibly yield 66,676.25 units of pectin or 21,715.46 units of manganese peroxidase. Also, this study provides new information about methods and strategies for the expression of enzymes with industrial value.info:eu-repo/semantics/openAccessPontificia Universidad Católica de ValparaísoElectronic Journal of Biotechnology v.18 n.3 20152015-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582015000300004en10.1016/j.ejbt.2015.03.002
institution Scielo Chile
collection Scielo Chile
language English
topic Cell wall
Chloroplast genetic transformation
Hydrolytic enzyme
Nicotiana tabacum
spellingShingle Cell wall
Chloroplast genetic transformation
Hydrolytic enzyme
Nicotiana tabacum
Espinoza-Sánchez,Edward Alexander
Álvarez-Hernández,Marianela Hazel
Torres-Castillo,Jorge Ariel
Rascón-Cruz,Quintín
Gutiérrez-Díez,Adriana
Zavala-García,Francisco
Sinagawa-García,Sugey Ramona
Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast
description Background The high capacity of chloroplast genome response to integrate and express transgenes at high levels makes this technology a good option to produce proteins of interest. This report presents the stable expression of Pectin lyase (PelA gene) and the first stable expression of manganese peroxidase (MnP-2 gene) from the chloroplast genome. Results pES4 and pES5 vectors were derived from pPV111A plasmid and contain the PelA and MnP-2 synthetic genes, respectively. Both genes are flanked by a synthetic rrn16S promoter and the 3'UTR from rbcL gene. Efficient gene integration into both inverted repeats of the intergenic region between rrn16S and 3'rps'12 was confirmed by Southern blot. Stable processing and expression of the RNA were confirmed by Northern blot analysis. Enzymatic activity was evaluated to detect expression and functionality of both enzymes. In general, mature plants showed more activity than young transplastomic plants. Compared to wild type plants, transplastomic events expressing pectin lyase exhibited enzymatic activity above 58.5% of total soluble protein at neutral pH and 60°C. In contrast, MnP-2 showed high activity at pH 6 with optimum temperature at 65°C. Neither transplastomic plant exhibited an abnormal phenotype. Conclusion This study demonstrated that hydrolytic genes PelA and MnP-2 could be integrated and expressed correctly from the chloroplast genome of tobacco plants. A whole plant, having ~ 470 g of biomass could feasibly yield 66,676.25 units of pectin or 21,715.46 units of manganese peroxidase. Also, this study provides new information about methods and strategies for the expression of enzymes with industrial value.
author Espinoza-Sánchez,Edward Alexander
Álvarez-Hernández,Marianela Hazel
Torres-Castillo,Jorge Ariel
Rascón-Cruz,Quintín
Gutiérrez-Díez,Adriana
Zavala-García,Francisco
Sinagawa-García,Sugey Ramona
author_facet Espinoza-Sánchez,Edward Alexander
Álvarez-Hernández,Marianela Hazel
Torres-Castillo,Jorge Ariel
Rascón-Cruz,Quintín
Gutiérrez-Díez,Adriana
Zavala-García,Francisco
Sinagawa-García,Sugey Ramona
author_sort Espinoza-Sánchez,Edward Alexander
title Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast
title_short Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast
title_full Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast
title_fullStr Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast
title_full_unstemmed Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast
title_sort stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast
publisher Pontificia Universidad Católica de Valparaíso
publishDate 2015
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582015000300004
work_keys_str_mv AT espinozasanchezedwardalexander stableexpressionandcharacterizationofafungalpectinaseandbacterialperoxidasegenesintobaccochloroplast
AT alvarezhernandezmarianelahazel stableexpressionandcharacterizationofafungalpectinaseandbacterialperoxidasegenesintobaccochloroplast
AT torrescastillojorgeariel stableexpressionandcharacterizationofafungalpectinaseandbacterialperoxidasegenesintobaccochloroplast
AT rasconcruzquintin stableexpressionandcharacterizationofafungalpectinaseandbacterialperoxidasegenesintobaccochloroplast
AT gutierrezdiezadriana stableexpressionandcharacterizationofafungalpectinaseandbacterialperoxidasegenesintobaccochloroplast
AT zavalagarciafrancisco stableexpressionandcharacterizationofafungalpectinaseandbacterialperoxidasegenesintobaccochloroplast
AT sinagawagarciasugeyramona stableexpressionandcharacterizationofafungalpectinaseandbacterialperoxidasegenesintobaccochloroplast
_version_ 1718441907799982080