Methanogenic toxicity evaluation of chlortetracycline hydrochloride

Background Anaerobic digestion is a technology applied successfully to converting organic matter into biogas. However, the presence of inhibitory compounds such as antibiotics can adversely affect methane production. The aim of this study is to evaluate the toxic effect of chlortetracycline hydrochl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Reyes-Contreras,Carolina, Vidal,Gladys
Lenguaje:English
Publicado: Pontificia Universidad Católica de Valparaíso 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582015000600010
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Background Anaerobic digestion is a technology applied successfully to converting organic matter into biogas. However, the presence of inhibitory compounds such as antibiotics can adversely affect methane production. The aim of this study is to evaluate the toxic effect of chlortetracycline hydrochloride (CLOR) on the methanogenic bacteria. In order to study the methanogenic toxicity of CLOR, different concentrations of CLOR (10, 50, 100, 200 mg L- 1) were evaluated by methanogenic toxicity assays using three feedings. Results Maximum methane production was obtained for the assays with 10 mg CLOR L- 1, the values obtained were 277 ± 4.07; 193 ± 11.31 and 166 ± 7.07 mL for the first, second and third feedings, respectively. The average values for acetic, propionic and butyric acid at start of the experiments were 2104 ± 139; 632 ± 7.6; 544 ± 26 mg L- 1, respectively. The VFA values obtained finally of the experiment were dependent on the evaluated antibiotic concentrations, indicating that the efficiency of methanogenesis is directly affected by the CLOR concentration. Conclusions CLOR is an effective methanogenic bacteria inhibitor. Moreover, the results show that CLOR has a bactericidal effect on methanogenic activity given that methane production did not recover during the third feeding. This study shows that the 50% inhibitory concentration (IC50) for methanogenic bacteria in 10 mg L- 1.