Spatial modeling of forest fires in Mexico: an integration of two data sources
Forest fires are a cause of global concern, which requires generating knowledge on their spatial behavior. By hypothesizing that the spatial pattern of forest fires across Mexico is randomly distributed, this study aimed at making an analysis of the distribution of forest fires (2005-2015) using rem...
Guardado en:
Autores principales: | , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Austral de Chile, Facultad de Ciencias Forestales
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002017000300014 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0717-92002017000300014 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0717-920020170003000142018-03-01Spatial modeling of forest fires in Mexico: an integration of two data sourcesZúñiga-Vásquez,José ManuelCisneros-González,DaríoPompa-García,MarínRodríguez-Trejo,Dante ArturoPérez-Verdín,Gustavo hotspots cluster-patterns spatial-correlations G statistics Forest fires are a cause of global concern, which requires generating knowledge on their spatial behavior. By hypothesizing that the spatial pattern of forest fires across Mexico is randomly distributed, this study aimed at making an analysis of the distribution of forest fires (2005-2015) using remote sensing information and field data collected by CONAFOR (National Forest Commission) and MODIS (Moderate-Resolution Imaging Spectroradiometer). The study compared both sources of information through the G-statistic test that identified clustering patterns. The "hot spots" analysis identified clustered areas with significant values in both data sources. These zones were extended through Sierra Madre Occidental, Península de Yucatán, northern Sierra Madre Oriental and Península de Baja California. The highly coincidental clusters were found in the central-western region along the Eje Neovolcánico, as well as in a small part of Sierra Madre del Sur. The analysis of spatial correlation determined that both sources of information complement each other, enhancing their scope. It is concluded that forest fires in Mexico follow a spatial clustering trend.info:eu-repo/semantics/openAccessUniversidad Austral de Chile, Facultad de Ciencias ForestalesBosque (Valdivia) v.38 n.3 20172017-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002017000300014en10.4067/S0717-92002017000300014 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
hotspots cluster-patterns spatial-correlations G statistics |
spellingShingle |
hotspots cluster-patterns spatial-correlations G statistics Zúñiga-Vásquez,José Manuel Cisneros-González,Darío Pompa-García,Marín Rodríguez-Trejo,Dante Arturo Pérez-Verdín,Gustavo Spatial modeling of forest fires in Mexico: an integration of two data sources |
description |
Forest fires are a cause of global concern, which requires generating knowledge on their spatial behavior. By hypothesizing that the spatial pattern of forest fires across Mexico is randomly distributed, this study aimed at making an analysis of the distribution of forest fires (2005-2015) using remote sensing information and field data collected by CONAFOR (National Forest Commission) and MODIS (Moderate-Resolution Imaging Spectroradiometer). The study compared both sources of information through the G-statistic test that identified clustering patterns. The "hot spots" analysis identified clustered areas with significant values in both data sources. These zones were extended through Sierra Madre Occidental, Península de Yucatán, northern Sierra Madre Oriental and Península de Baja California. The highly coincidental clusters were found in the central-western region along the Eje Neovolcánico, as well as in a small part of Sierra Madre del Sur. The analysis of spatial correlation determined that both sources of information complement each other, enhancing their scope. It is concluded that forest fires in Mexico follow a spatial clustering trend. |
author |
Zúñiga-Vásquez,José Manuel Cisneros-González,Darío Pompa-García,Marín Rodríguez-Trejo,Dante Arturo Pérez-Verdín,Gustavo |
author_facet |
Zúñiga-Vásquez,José Manuel Cisneros-González,Darío Pompa-García,Marín Rodríguez-Trejo,Dante Arturo Pérez-Verdín,Gustavo |
author_sort |
Zúñiga-Vásquez,José Manuel |
title |
Spatial modeling of forest fires in Mexico: an integration of two data sources |
title_short |
Spatial modeling of forest fires in Mexico: an integration of two data sources |
title_full |
Spatial modeling of forest fires in Mexico: an integration of two data sources |
title_fullStr |
Spatial modeling of forest fires in Mexico: an integration of two data sources |
title_full_unstemmed |
Spatial modeling of forest fires in Mexico: an integration of two data sources |
title_sort |
spatial modeling of forest fires in mexico: an integration of two data sources |
publisher |
Universidad Austral de Chile, Facultad de Ciencias Forestales |
publishDate |
2017 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002017000300014 |
work_keys_str_mv |
AT zunigavasquezjosemanuel spatialmodelingofforestfiresinmexicoanintegrationoftwodatasources AT cisnerosgonzalezdario spatialmodelingofforestfiresinmexicoanintegrationoftwodatasources AT pompagarciamarin spatialmodelingofforestfiresinmexicoanintegrationoftwodatasources AT rodrigueztrejodantearturo spatialmodelingofforestfiresinmexicoanintegrationoftwodatasources AT perezverdingustavo spatialmodelingofforestfiresinmexicoanintegrationoftwodatasources |
_version_ |
1718444236694618112 |