Spatial modeling of forest fires in Mexico: an integration of two data sources

Forest fires are a cause of global concern, which requires generating knowledge on their spatial behavior. By hypothesizing that the spatial pattern of forest fires across Mexico is randomly distributed, this study aimed at making an analysis of the distribution of forest fires (2005-2015) using rem...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zúñiga-Vásquez,José Manuel, Cisneros-González,Darío, Pompa-García,Marín, Rodríguez-Trejo,Dante Arturo, Pérez-Verdín,Gustavo
Lenguaje:English
Publicado: Universidad Austral de Chile, Facultad de Ciencias Forestales 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002017000300014
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0717-92002017000300014
record_format dspace
spelling oai:scielo:S0717-920020170003000142018-03-01Spatial modeling of forest fires in Mexico: an integration of two data sourcesZúñiga-Vásquez,José ManuelCisneros-González,DaríoPompa-García,MarínRodríguez-Trejo,Dante ArturoPérez-Verdín,Gustavo hotspots cluster-patterns spatial-correlations G statistics Forest fires are a cause of global concern, which requires generating knowledge on their spatial behavior. By hypothesizing that the spatial pattern of forest fires across Mexico is randomly distributed, this study aimed at making an analysis of the distribution of forest fires (2005-2015) using remote sensing information and field data collected by CONAFOR (National Forest Commission) and MODIS (Moderate-Resolution Imaging Spectroradiometer). The study compared both sources of information through the G-statistic test that identified clustering patterns. The "hot spots" analysis identified clustered areas with significant values in both data sources. These zones were extended through Sierra Madre Occidental, Península de Yucatán, northern Sierra Madre Oriental and Península de Baja California. The highly coincidental clusters were found in the central-western region along the Eje Neovolcánico, as well as in a small part of Sierra Madre del Sur. The analysis of spatial correlation determined that both sources of information complement each other, enhancing their scope. It is concluded that forest fires in Mexico follow a spatial clustering trend.info:eu-repo/semantics/openAccessUniversidad Austral de Chile, Facultad de Ciencias ForestalesBosque (Valdivia) v.38 n.3 20172017-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002017000300014en10.4067/S0717-92002017000300014
institution Scielo Chile
collection Scielo Chile
language English
topic hotspots
cluster-patterns
spatial-correlations
G statistics
spellingShingle hotspots
cluster-patterns
spatial-correlations
G statistics
Zúñiga-Vásquez,José Manuel
Cisneros-González,Darío
Pompa-García,Marín
Rodríguez-Trejo,Dante Arturo
Pérez-Verdín,Gustavo
Spatial modeling of forest fires in Mexico: an integration of two data sources
description Forest fires are a cause of global concern, which requires generating knowledge on their spatial behavior. By hypothesizing that the spatial pattern of forest fires across Mexico is randomly distributed, this study aimed at making an analysis of the distribution of forest fires (2005-2015) using remote sensing information and field data collected by CONAFOR (National Forest Commission) and MODIS (Moderate-Resolution Imaging Spectroradiometer). The study compared both sources of information through the G-statistic test that identified clustering patterns. The "hot spots" analysis identified clustered areas with significant values in both data sources. These zones were extended through Sierra Madre Occidental, Península de Yucatán, northern Sierra Madre Oriental and Península de Baja California. The highly coincidental clusters were found in the central-western region along the Eje Neovolcánico, as well as in a small part of Sierra Madre del Sur. The analysis of spatial correlation determined that both sources of information complement each other, enhancing their scope. It is concluded that forest fires in Mexico follow a spatial clustering trend.
author Zúñiga-Vásquez,José Manuel
Cisneros-González,Darío
Pompa-García,Marín
Rodríguez-Trejo,Dante Arturo
Pérez-Verdín,Gustavo
author_facet Zúñiga-Vásquez,José Manuel
Cisneros-González,Darío
Pompa-García,Marín
Rodríguez-Trejo,Dante Arturo
Pérez-Verdín,Gustavo
author_sort Zúñiga-Vásquez,José Manuel
title Spatial modeling of forest fires in Mexico: an integration of two data sources
title_short Spatial modeling of forest fires in Mexico: an integration of two data sources
title_full Spatial modeling of forest fires in Mexico: an integration of two data sources
title_fullStr Spatial modeling of forest fires in Mexico: an integration of two data sources
title_full_unstemmed Spatial modeling of forest fires in Mexico: an integration of two data sources
title_sort spatial modeling of forest fires in mexico: an integration of two data sources
publisher Universidad Austral de Chile, Facultad de Ciencias Forestales
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002017000300014
work_keys_str_mv AT zunigavasquezjosemanuel spatialmodelingofforestfiresinmexicoanintegrationoftwodatasources
AT cisnerosgonzalezdario spatialmodelingofforestfiresinmexicoanintegrationoftwodatasources
AT pompagarciamarin spatialmodelingofforestfiresinmexicoanintegrationoftwodatasources
AT rodrigueztrejodantearturo spatialmodelingofforestfiresinmexicoanintegrationoftwodatasources
AT perezverdingustavo spatialmodelingofforestfiresinmexicoanintegrationoftwodatasources
_version_ 1718444236694618112