Artificial neural network models for predicting relationships between diameter at breast height and stump diameter: Crimean pine stands at ÇAKÜ Forest
SUMMARY: This study introduces the artificial neural networks (ANN) function to model relationship between diameter at breast height (dbh) and stump diameter and investigates the potential of ANN model to obtain the prediction of dbh. In total, 583 diameters at breast height-stump diameter...
Guardado en:
Autores principales: | Şenyurt,Muammer, Ercanlı,İlker, Günlü,Alkan, Bolat,Ferhat, Bulut,Sinan |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Austral de Chile, Facultad de Ciencias Forestales
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002020000100025 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Taper equations based on nonlinear mixed effect modeling approach for Pinus nigra in Çankırı forests
por: Senyurt,Muammer, et al.
Publicado: (2017) -
Computing the maximal signless Laplacian index among graphs of prescribed order and diameter
por: Abreu,Nair, et al.
Publicado: (2015) -
Computed fiber evaluation of SEM images using DiameterJ
por: Götz Andreas, et al.
Publicado: (2020) -
Optimizing Tip Diameter in Phacoemulsification of Varying Lens Sizes: An in vitro Study
por: Ramshekar A, et al.
Publicado: (2021) -
Minimum distance-unbalancedness of graphs with diameter 2 and given number of edges
por: Kexiang Xu, et al.
Publicado: (2021)