Stand biomass estimation methods for Eucalyptus grandis and Eucalyptus dunnii in Uruguay

SUMMARY: Biomass additivity is a desirable characteristic of a system of equations for predicting components and total biomass, since equations independently adjusted generate biologically inconsistent results. The aim of this study was to fit and compare three methods for modelling biomass: (i) tot...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hirigoyen,Andrés, Resquin,Fernando, Navarro Cerrillo,Rafael, Franco,Jorge, Rachid Casnati,Cecilia
Lenguaje:English
Publicado: Universidad Austral de Chile, Facultad de Ciencias Forestales 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002021000100053
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0717-92002021000100053
record_format dspace
spelling oai:scielo:S0717-920020210001000532021-07-25Stand biomass estimation methods for Eucalyptus grandis and Eucalyptus dunnii in UruguayHirigoyen,AndrésResquin,FernandoNavarro Cerrillo,RafaelFranco,JorgeRachid Casnati,Cecilia Additive biomass equations biomass partitioning NSUR system of equations SUMMARY: Biomass additivity is a desirable characteristic of a system of equations for predicting components and total biomass, since equations independently adjusted generate biologically inconsistent results. The aim of this study was to fit and compare three methods for modelling biomass: (i) total biomass individual regression, (ii) total biomass regression function calculated as the sum of separate biomass components, and (iii) simultaneous equations of biomass components based on Nonlinear Seemingly Unrelated Regression. A total of 208 trees of Eucalyptus dunnii and Eucalyptus grandis were harvested and destructively sampled to record above-ground biomass. Results indicate that a system of equations adjusted by simultaneous equations provides accurate biomass estimations, guaranteeing additivity. This model system showed good fit and good prediction performance, given that the correlation coefficient was higher than 97 % for total above-ground biomass, for both species; whereas root mean square error was 23.9 kg and 30.2 kg for E. grandis and E. dunnii, respectively. A system of biomass equations was developed for each eucalyptus species, such that the sum of the estimations of the biomass components equaled the estimate of above-ground biomass. Results showed that the systems of equations have high potential for improving the accuracy of individual tree above-ground biomass estimates for both species.info:eu-repo/semantics/openAccessUniversidad Austral de Chile, Facultad de Ciencias ForestalesBosque (Valdivia) v.42 n.1 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002021000100053en10.4067/S0717-92002021000100053
institution Scielo Chile
collection Scielo Chile
language English
topic Additive biomass equations
biomass partitioning
NSUR
system of equations
spellingShingle Additive biomass equations
biomass partitioning
NSUR
system of equations
Hirigoyen,Andrés
Resquin,Fernando
Navarro Cerrillo,Rafael
Franco,Jorge
Rachid Casnati,Cecilia
Stand biomass estimation methods for Eucalyptus grandis and Eucalyptus dunnii in Uruguay
description SUMMARY: Biomass additivity is a desirable characteristic of a system of equations for predicting components and total biomass, since equations independently adjusted generate biologically inconsistent results. The aim of this study was to fit and compare three methods for modelling biomass: (i) total biomass individual regression, (ii) total biomass regression function calculated as the sum of separate biomass components, and (iii) simultaneous equations of biomass components based on Nonlinear Seemingly Unrelated Regression. A total of 208 trees of Eucalyptus dunnii and Eucalyptus grandis were harvested and destructively sampled to record above-ground biomass. Results indicate that a system of equations adjusted by simultaneous equations provides accurate biomass estimations, guaranteeing additivity. This model system showed good fit and good prediction performance, given that the correlation coefficient was higher than 97 % for total above-ground biomass, for both species; whereas root mean square error was 23.9 kg and 30.2 kg for E. grandis and E. dunnii, respectively. A system of biomass equations was developed for each eucalyptus species, such that the sum of the estimations of the biomass components equaled the estimate of above-ground biomass. Results showed that the systems of equations have high potential for improving the accuracy of individual tree above-ground biomass estimates for both species.
author Hirigoyen,Andrés
Resquin,Fernando
Navarro Cerrillo,Rafael
Franco,Jorge
Rachid Casnati,Cecilia
author_facet Hirigoyen,Andrés
Resquin,Fernando
Navarro Cerrillo,Rafael
Franco,Jorge
Rachid Casnati,Cecilia
author_sort Hirigoyen,Andrés
title Stand biomass estimation methods for Eucalyptus grandis and Eucalyptus dunnii in Uruguay
title_short Stand biomass estimation methods for Eucalyptus grandis and Eucalyptus dunnii in Uruguay
title_full Stand biomass estimation methods for Eucalyptus grandis and Eucalyptus dunnii in Uruguay
title_fullStr Stand biomass estimation methods for Eucalyptus grandis and Eucalyptus dunnii in Uruguay
title_full_unstemmed Stand biomass estimation methods for Eucalyptus grandis and Eucalyptus dunnii in Uruguay
title_sort stand biomass estimation methods for eucalyptus grandis and eucalyptus dunnii in uruguay
publisher Universidad Austral de Chile, Facultad de Ciencias Forestales
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002021000100053
work_keys_str_mv AT hirigoyenandres standbiomassestimationmethodsforeucalyptusgrandisandeucalyptusdunniiinuruguay
AT resquinfernando standbiomassestimationmethodsforeucalyptusgrandisandeucalyptusdunniiinuruguay
AT navarrocerrillorafael standbiomassestimationmethodsforeucalyptusgrandisandeucalyptusdunniiinuruguay
AT francojorge standbiomassestimationmethodsforeucalyptusgrandisandeucalyptusdunniiinuruguay
AT rachidcasnaticecilia standbiomassestimationmethodsforeucalyptusgrandisandeucalyptusdunniiinuruguay
_version_ 1718444259741270016