Prenatal Stress Caused by Movement Restriction Induces Changes in the Appendicular Osseous Development of CF-1 Mice Progeny

Prenatal stress has been associatedwith alterationsin weight andbody size, as well as disturbances inthe process ofdevelopingskeletalossification, occurringduring childbirth and the early stagesof life.However, theeffectevidence of prenatal stresson bone growthand development duringthe gestation per...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lizana,Pablo, Henríquez,Ricardo, Muñoz,Pablo
Lenguaje:English
Publicado: Sociedad Chilena de Anatomía 2012
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022012000300059
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0717-95022012000300059
record_format dspace
spelling oai:scielo:S0717-950220120003000592013-02-20Prenatal Stress Caused by Movement Restriction Induces Changes in the Appendicular Osseous Development of CF-1 Mice ProgenyLizana,PabloHenríquez,RicardoMuñoz,Pablo Prenatal Stress CF1 Mouse Alizarin red Appendicular Skeletal Morphometric Movement restriction Prenatal stress has been associatedwith alterationsin weight andbody size, as well as disturbances inthe process ofdevelopingskeletalossification, occurringduring childbirth and the early stagesof life.However, theeffectevidence of prenatal stresson bone growthand development duringthe gestation periodhas been low; therefore, it is unknown whether these alterations are associated with potential for growth disorders Because of this, thestudy aims todetermine theshort-term effectsof prenatal stress onthe CF-1mouse bone structure growth inyour date of birth. The female mice were divided randomly in two groups: controlled (n=2) and stressed (n=3). The latter was put under stress by means of movement restriction during the last week of gestation. Second, an evaluation of their gestational development was made, obtaining measurements of their weight. Finally, diaphanization with KOH and staining with Alizarin red was used to measure the length of their appendicular bones and their flat pelvic bones, of 53 P0 mice (25 control; 28 stressed during gestation). The stressed mice's body weight (p=0.02) and the length of their appendicular bones (radii, p=0.0011; ulnae, p= 0.0001; humeri, p=0.0001; femorae, p=0.0006; tibiae, p=0.0015) were affected significantly in contrast with the controlled group. On the other hand,there were nosignificant differences inmaternal bodyweightand length ofthe mice pelvic bones (isquium, ilium; p>0.05). The prenatal stress by means of movement restriction alters the osseous appendicular morphology of the CF-1 mouse evaluated at birth.info:eu-repo/semantics/openAccessSociedad Chilena de AnatomíaInternational Journal of Morphology v.30 n.3 20122012-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022012000300059en10.4067/S0717-95022012000300059
institution Scielo Chile
collection Scielo Chile
language English
topic Prenatal Stress
CF1 Mouse
Alizarin red
Appendicular Skeletal
Morphometric
Movement restriction
spellingShingle Prenatal Stress
CF1 Mouse
Alizarin red
Appendicular Skeletal
Morphometric
Movement restriction
Lizana,Pablo
Henríquez,Ricardo
Muñoz,Pablo
Prenatal Stress Caused by Movement Restriction Induces Changes in the Appendicular Osseous Development of CF-1 Mice Progeny
description Prenatal stress has been associatedwith alterationsin weight andbody size, as well as disturbances inthe process ofdevelopingskeletalossification, occurringduring childbirth and the early stagesof life.However, theeffectevidence of prenatal stresson bone growthand development duringthe gestation periodhas been low; therefore, it is unknown whether these alterations are associated with potential for growth disorders Because of this, thestudy aims todetermine theshort-term effectsof prenatal stress onthe CF-1mouse bone structure growth inyour date of birth. The female mice were divided randomly in two groups: controlled (n=2) and stressed (n=3). The latter was put under stress by means of movement restriction during the last week of gestation. Second, an evaluation of their gestational development was made, obtaining measurements of their weight. Finally, diaphanization with KOH and staining with Alizarin red was used to measure the length of their appendicular bones and their flat pelvic bones, of 53 P0 mice (25 control; 28 stressed during gestation). The stressed mice's body weight (p=0.02) and the length of their appendicular bones (radii, p=0.0011; ulnae, p= 0.0001; humeri, p=0.0001; femorae, p=0.0006; tibiae, p=0.0015) were affected significantly in contrast with the controlled group. On the other hand,there were nosignificant differences inmaternal bodyweightand length ofthe mice pelvic bones (isquium, ilium; p>0.05). The prenatal stress by means of movement restriction alters the osseous appendicular morphology of the CF-1 mouse evaluated at birth.
author Lizana,Pablo
Henríquez,Ricardo
Muñoz,Pablo
author_facet Lizana,Pablo
Henríquez,Ricardo
Muñoz,Pablo
author_sort Lizana,Pablo
title Prenatal Stress Caused by Movement Restriction Induces Changes in the Appendicular Osseous Development of CF-1 Mice Progeny
title_short Prenatal Stress Caused by Movement Restriction Induces Changes in the Appendicular Osseous Development of CF-1 Mice Progeny
title_full Prenatal Stress Caused by Movement Restriction Induces Changes in the Appendicular Osseous Development of CF-1 Mice Progeny
title_fullStr Prenatal Stress Caused by Movement Restriction Induces Changes in the Appendicular Osseous Development of CF-1 Mice Progeny
title_full_unstemmed Prenatal Stress Caused by Movement Restriction Induces Changes in the Appendicular Osseous Development of CF-1 Mice Progeny
title_sort prenatal stress caused by movement restriction induces changes in the appendicular osseous development of cf-1 mice progeny
publisher Sociedad Chilena de Anatomía
publishDate 2012
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022012000300059
work_keys_str_mv AT lizanapablo prenatalstresscausedbymovementrestrictioninduceschangesintheappendicularosseousdevelopmentofcf1miceprogeny
AT henriquezricardo prenatalstresscausedbymovementrestrictioninduceschangesintheappendicularosseousdevelopmentofcf1miceprogeny
AT munozpablo prenatalstresscausedbymovementrestrictioninduceschangesintheappendicularosseousdevelopmentofcf1miceprogeny
_version_ 1718444797339893760