Prenatal Stress Caused by Movement Restriction Induces Changes in the Development of Skull Bone in CF-1 Mice Progeny

Prenatal stress is associated with changes in body weight and size, and with disorders of the skeletal bone development process. However, there is a lack of documentation on the impact of prenatal stress on skull bone anatomy during the gestation period. Therefore, this research focuses on the short...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Henríquez,Ricardo, Olivares,Rossy, Caro,Gabriel, Guevara,Víctor, Lizana,Pablo
Lenguaje:English
Publicado: Sociedad Chilena de Anatomía 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022013000300042
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Prenatal stress is associated with changes in body weight and size, and with disorders of the skeletal bone development process. However, there is a lack of documentation on the impact of prenatal stress on skull bone anatomy during the gestation period. Therefore, this research focuses on the short-term effects of prenatal stress on the skull bone anatomy of CF-1 mice on the day of birth. Methodology: Gestating females were divided at random into two groups (control and stressed). The experimental group was subjected to the stress of movement restriction during the final week of gestation. Upon birth the body weight of the progeny was evaluated (control group, n=34; stressed group, n=29). They were then cleaned and stained with alizarin red in order to evaluate the length, width and suture spaces of the skull bone anatomy from superior and inferior views. Results: Gestational stress significantly altered the skull bone anatomy (p<0.05) of the offspring at birth in comparison with the control group. Conclusion: Prenatal stress alters the skull bone anatomy of the CF-1 mouse at birth.