Computer Graphics Applied to Anatomy: A Study of two Bio-CAD Modeling Methods on Finite Element Analysis of Human Edentulous Hemi-Mandible
Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible...
Guardado en:
Autores principales: | , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad Chilena de Anatomía
2014
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022014000300011 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0717-95022014000300011 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0717-950220140003000112015-11-16Computer Graphics Applied to Anatomy: A Study of two Bio-CAD Modeling Methods on Finite Element Analysis of Human Edentulous Hemi-MandibleRossi,Ana CláudiaFreire,Alexandre RodriguesBotacin,Paulo RobertoCaria,Paulo HenriqueFerreiraPrado,Felippe Bevilacqua Computational modeling Mandible Finite element analysis Biomechanics Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible on the finite element analysis. From CT scans of dried human skull was reconstructed a stereolithographic model. Two methods of modeling were performed: STL conversion approach (Model 1) associated to STL simplification and reverse engineering approach (Model 2). For finite element analysis was used the action of lateral pterygoid muscle as loading condition to assess total displacement (D), equivalent von-Mises stress (VM) and maximum principal stress (MP). Two models presented differences on the geometry regarding surface number (1834 (model 1); 282 (model 2)). Were observed differences in finite element mesh regarding element number (30428 nodes/16683 elements (model 1); 15801 nodes/8410 elements (model 2). D, VM and MP stress areas presented similar distribution in two models. The values were different regarding maximum and minimum values of D (ranging 00.511 mm (model 1) and 00.544 mm (model 2), VM stress (6.36E-0411.4 MPa (model 1) and 2.15E-0414.7 MPa (model 2) and MP stress (-1.439.14 MPa (model 1) and -1.211.6 MPa (model 2). From two methods of Bio-CAD modeling, the reverse engineering presented better anatomical representation compared to the STL conversion approach. The models presented differences in the finite element mesh, total displacement and stress distribution.info:eu-repo/semantics/openAccessSociedad Chilena de AnatomíaInternational Journal of Morphology v.32 n.3 20142014-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022014000300011en10.4067/S0717-95022014000300011 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Computational modeling Mandible Finite element analysis Biomechanics |
spellingShingle |
Computational modeling Mandible Finite element analysis Biomechanics Rossi,Ana Cláudia Freire,Alexandre Rodrigues Botacin,Paulo Roberto Caria,Paulo HenriqueFerreira Prado,Felippe Bevilacqua Computer Graphics Applied to Anatomy: A Study of two Bio-CAD Modeling Methods on Finite Element Analysis of Human Edentulous Hemi-Mandible |
description |
Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible on the finite element analysis. From CT scans of dried human skull was reconstructed a stereolithographic model. Two methods of modeling were performed: STL conversion approach (Model 1) associated to STL simplification and reverse engineering approach (Model 2). For finite element analysis was used the action of lateral pterygoid muscle as loading condition to assess total displacement (D), equivalent von-Mises stress (VM) and maximum principal stress (MP). Two models presented differences on the geometry regarding surface number (1834 (model 1); 282 (model 2)). Were observed differences in finite element mesh regarding element number (30428 nodes/16683 elements (model 1); 15801 nodes/8410 elements (model 2). D, VM and MP stress areas presented similar distribution in two models. The values were different regarding maximum and minimum values of D (ranging 00.511 mm (model 1) and 00.544 mm (model 2), VM stress (6.36E-0411.4 MPa (model 1) and 2.15E-0414.7 MPa (model 2) and MP stress (-1.439.14 MPa (model 1) and -1.211.6 MPa (model 2). From two methods of Bio-CAD modeling, the reverse engineering presented better anatomical representation compared to the STL conversion approach. The models presented differences in the finite element mesh, total displacement and stress distribution. |
author |
Rossi,Ana Cláudia Freire,Alexandre Rodrigues Botacin,Paulo Roberto Caria,Paulo HenriqueFerreira Prado,Felippe Bevilacqua |
author_facet |
Rossi,Ana Cláudia Freire,Alexandre Rodrigues Botacin,Paulo Roberto Caria,Paulo HenriqueFerreira Prado,Felippe Bevilacqua |
author_sort |
Rossi,Ana Cláudia |
title |
Computer Graphics Applied to Anatomy: A Study of two Bio-CAD Modeling Methods on Finite Element Analysis of Human Edentulous Hemi-Mandible |
title_short |
Computer Graphics Applied to Anatomy: A Study of two Bio-CAD Modeling Methods on Finite Element Analysis of Human Edentulous Hemi-Mandible |
title_full |
Computer Graphics Applied to Anatomy: A Study of two Bio-CAD Modeling Methods on Finite Element Analysis of Human Edentulous Hemi-Mandible |
title_fullStr |
Computer Graphics Applied to Anatomy: A Study of two Bio-CAD Modeling Methods on Finite Element Analysis of Human Edentulous Hemi-Mandible |
title_full_unstemmed |
Computer Graphics Applied to Anatomy: A Study of two Bio-CAD Modeling Methods on Finite Element Analysis of Human Edentulous Hemi-Mandible |
title_sort |
computer graphics applied to anatomy: a study of two bio-cad modeling methods on finite element analysis of human edentulous hemi-mandible |
publisher |
Sociedad Chilena de Anatomía |
publishDate |
2014 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022014000300011 |
work_keys_str_mv |
AT rossianaclaudia computergraphicsappliedtoanatomyastudyoftwobiocadmodelingmethodsonfiniteelementanalysisofhumanedentuloushemimandible AT freirealexandrerodrigues computergraphicsappliedtoanatomyastudyoftwobiocadmodelingmethodsonfiniteelementanalysisofhumanedentuloushemimandible AT botacinpauloroberto computergraphicsappliedtoanatomyastudyoftwobiocadmodelingmethodsonfiniteelementanalysisofhumanedentuloushemimandible AT cariapaulohenriqueferreira computergraphicsappliedtoanatomyastudyoftwobiocadmodelingmethodsonfiniteelementanalysisofhumanedentuloushemimandible AT pradofelippebevilacqua computergraphicsappliedtoanatomyastudyoftwobiocadmodelingmethodsonfiniteelementanalysisofhumanedentuloushemimandible |
_version_ |
1718444878693662720 |